
Registered in England Registration No. 2624328

Issue 1.0,
Doc Ref: MWA/DBAdmin

28 February 2018

McCallum Whyman Associates Ltd

EMail: info@ mccallumwhyman.com, http://www.mccallumwhyman.com

MWA Software

Firebird
Server

Management
using IBX

COPYRIGHT

The copyright in this work is vested in McCallum Whyman
Associates Ltd. The contents of the document may be freely
distributed and copied provided the source is correctly
identified as this document.

© Copyright McCallum Whyman Associates Ltd (2018)
trading as MWA Software.

Disclaimer

Although our best efforts have been made to ensure that the
information contained within is up-to-date and accurate, no
warranty whatsover is offered as to its correctness and readers
are responsible for ensuring through testing or any other
appropriate procedures that the information provided is correct
and appropriate for the purpose for which it is used.

ii

CONTENTS Page

1 INTRODUCTION..1
1.1 REFERENCES..2

2 USING THE IBX SERVICES API FOR DATABASE ADMINISTRATION...3
2.1 RUNNING THE EXAMPLE..3
2.2 DATABASE BACKUP..4
2.3 DATABASE RESTORE...5
2.4 SERVER LOG...5
2.5 USER MANAGEMENT..6
2.6 THE “DATABASE” ACTIONS...7

2.6.1 Show Statistics..7
2.6.2 Validation...7
2.6.3 Limbo Transaction Resolution...7
2.6.4 Database Sweep...9
2.6.5 Database Shutdown..10
2.6.6 Bringing a Database Backup Online...10

2.7 USING AN ALTERNATIVE SECURITY DATABASE...11
2.8 HOW IT WORKS..11

2.8.1 Services API Login...13
2.8.2 IBX for Lazarus and the Services API..13
2.8.3 IBX 2.2 and the Services API...13
2.8.4 User Management..13
2.8.5 Limbo Transactions..14
2.8.6 Using Alternative Security Databases...14

2.9 SUMMARY...15

3 THE DBADMIN TOOL...17
3.1 RUNNING THE EXAMPLE..18

3.1.1 The RDB$ADMIN role...18
3.2 DATABASE PROPERTIES...19

3.2.1 Database Backup...20
3.2.2 Database Restore...21

3.3 THE FILES PAGE..22
3.3.1 Adding a Secondary File..22
3.3.2 Shadow Sets..23

3.3.2.1 Adding a Shadow Set...23
3.3.2.2 Dropping a Shadow Set...24

3.4 THE ATTACHMENTS PAGE...24
3.5 THE STATISTICS PAGE...24
3.6 SCHEMA PAGE...25
3.7 THE SERVER PAGE...25
3.8 THE USER MANAGER PAGE..25
3.9 THE ACCESS RIGHTS PAGE...27

3.9.1 Stale Users...28
3.10 THE AUTH MAPPINGS PAGE..29
3.11 THE DATABASE REPAIR PAGE..30

3.11.1 Database Sweep...30
3.11.2 Online Validation..30
3.11.3 Database Validation...31
3.11.4 Kill Shadows...32

3.12 THE LIMBO TRANSACTIONS PAGE..32
3.13 HOW IT WORKS..33

3.13.1 Database Connections...33
3.13.2 Service API Login..33

iii

 Introduction

1
Introduction

This document is a supplement to the IBX For Lazarus User Guide and explores how IBX for
Lazarus can be used to create applications that perform Firebird Server Management and Firebird
User Management and which manage user access rights to Firebird Databases.

Server Management is primarily provided through the Services API and IBX provides a set of
components on the “Firebird Admin” palette that may be used for different aspects of Server
Management, including database backup/restore, statistics collection, database validation, Limbo
Transaction resolution and User Management.

Prior to Firebird 3, there was a single (global) security database (containing user credentials) per
server. Many access rights were implicit (e.g. creating tables or even whole databases) and the
granting and revoking of access rights was performed using DDL statements.

Firebird 3 has improved upon this by:

• Permitting User Management to be performed using a combination of virtual tables and
DDL Statements.

• Supporting alternative security databases on a per database basis.

• Allowing all access rights to be explicitly managed through DDL statements.

Use of the Services API is necessary for many server and database management tasks including
database repair and maintenance, backup and restore. However, use of the Services API for User
Management is now deprecated in Firebird 3 in favour of User Management via a database
connection. For legacy support, the Services API is still available for User Management. However,
it is limited to the global security database.

• Through the IBServices unit and the TIBSecurityService, IBX made available access to the
Firebird Services API and hence could support User Management applications. This
functionality continues to be available for legacy use.

1

Firebird Server Management using IBX

• In IBX 2.1, the TIBUpdate component was introduced. This is intended to support dataset
update using DDL statements. That is datasets generated from Firebird virtual tables and
presented to the user using TIBQuery. Together they enable Firebird 3 style User
Management through virtual tables and supporting DDL statements in a straightforward
manner.

The IBX for Lazarus source code provides examples for both legacy and Firebird 3 User
Management. This guide supports these examples and attempts to explain:

• How IBX may be used to support legacy User Management through the Services API,
alongside other Server Management activities.

• How IBX may be used to support Firebird 3 User Management and the assignment of
extended Access Rights

1.1 References

1. IBX for Lazarus User Guide -MWA Software – Issue 1.5
https://mwasoftware.co.uk/downloads/send/5-ibx-current/147-ibx4lazarusguide

2. Firebird 3.0.3 Release Notes
https://www.firebirdsql.org/file/documentation/release_notes/Firebird-3.0.3-
ReleaseNotes.pdf

3. Firebird 2.5.8 Release Notes
https://www.firebirdsql.org/file/documentation/release_notes/Firebird-2.5.8-
ReleaseNotes.pdf

4. Firebird 2.5 Language Reference
https://www.firebirdsql.org/file/documentation/reference_manuals/fblangref25-
en/html/fblangref25.html

5. Firebird Database Housekeeping Utility (gfix) -
https://www.firebirdsql.org/pdfmanual/html/gfix.html

2

https://www.firebirdsql.org/file/documentation/release_notes/Firebird-3.0.3-ReleaseNotes.pdf
https://www.firebirdsql.org/file/documentation/release_notes/Firebird-3.0.3-ReleaseNotes.pdf
https://www.firebirdsql.org/pdfmanual/html/gfix.html
https://www.firebirdsql.org/file/documentation/reference_manuals/fblangref25-en/html/fblangref25.html
https://www.firebirdsql.org/file/documentation/reference_manuals/fblangref25-en/html/fblangref25.html
https://www.firebirdsql.org/file/documentation/release_notes/Firebird-2.5.8-ReleaseNotes.pdf
https://www.firebirdsql.org/file/documentation/release_notes/Firebird-2.5.8-ReleaseNotes.pdf

 Using the IBX Services API for Database Administration

2
Using the IBX Services API for

Database Administration
In the ibx/examples/services directory, an example application is provided that demonstrates the
use of IBX for a range of Server Management tasks. These are:

1. Database backup and restore.

2. Viewing the Server Log

3. Viewing Server Statistics

4. User Management

5. Database Validation

6. Limbo Transaction Recovery.

7. Working with Alternative Security Databases in Firebird 3.

The purpose of the example is to demonstrate use of the IBX Services API rather than to provide a
practical database administration tool. As regards database administration, using the Services API
alone, has not kept pace with the way that Firebird has been developing – for example in the use
of virtual tables to access system information. The Database Administration tool presented in
section 3 uses virtual database tables wherever possible and the Services API only when it has
too. The result is arguably a much “slicker” tool.

2.1 Running the Example

In the Lazarus IDE, open the project file ibx/examples/services/services.lpi. Compile and run.

3

Firebird Server Management using IBX

The program starts by presenting a standard login dialog. By default it proposes the “localhost” as
the server, this can be overridden to the DNS name of any server that you have access to.

Note that the example always uses TCP as the connection protocol. To use any other protocol, change the
“Protocol” property in the IBServerProperties1 component on the main form before compiling the example
program.

You must also enter your login details and password. To use the full range of services available,
you will normally want to login as the SYSDBA user. The SQL role “RDB$ADMIN” is always
requested so that if a normal user is logged in they will have Admin privileges enabled for User
Management, but only if they have already been granted the Admin Role on the Default Security
Database. If you login as a normal user (even with the Admin Role) expect many exceptions to be
raised i.e. every time you access a service you are not permitted to use.

On successful login, the IBServerProperties1 component is used to access and display the basic
properties of the remote server.

The buttons along the base of the form may now be used to invoke the various actions supported
by the Services API.

2.2 Database Backup

Selecting the Backup Service brings up the Database Backup dialog.

The Services API component TIBBackupService can be used to backup any database on the
server to a gbak format archive file. The archive file can be placed on either the server or the local
client (your computer).

In order to take a backup:

4

Illustration 1: Services API Example Main Form

 Using the IBX Services API for Database Administration

• enter the database name (the dialog defaults to suggesting the example employee
database).

Note: that this does is not a connect string and must not include the server name. When using the
Services API, the database name is always the name of the database on the selected server.

• Select a Server or Client side
backup.

• Enter the backup file name, and

• click on OK.

The backup will now be performed with
feedback written to the main form's
information log.

Note that with a client side backup, there
is no verbose output and the operation
completes by recording the number of
bytes written.

The action will fail if you login under a
user name with insufficient privilege to
backup the database.

2.3 Database Restore

Selecting the Restore Service brings up
the Database Restore Dialog. This uses
the TIBRestoreService to create/replace
a database from an existing gbak format
archive and is very similar to the Backup
Dialog. The different is that the source
archive file must exist. If the destination
database exists then the “replace
database checkbox must be checked to
permit the database to be replaced.

Click on OK to restore the database from
the archive. In this case, restore from a
client file will generated verbose output.

2.4 Server Log

Click on the “Server Log” button invokes the TIBLogService in order to read the current Log File on
the remote server. The results are displayed in the main form's information log.

5

Illustration 2: Database Backup Dialog

Illustration 3: Database Restore Dialog

Firebird Server Management using IBX

2.5 User Management

Clicking on the “Users” button brings up the User Management Dialog.

The TIBSecurityService Component is used to display the current list of users. It may also be used
to add a new user, delete and existing user or to change user details.

Prior to Firebird 3, the Services API was the only mechanism available for User Management. In Firebird 3,
the SEC$USERS virtual table has been introduced, which along with the CREATE/ALTER/DROP USER
statement enables User Management through the Database connection. Use of the Services API for User
Management has been deprecated in Firebird 3 and is anyway limited to the default User Management and
the default Security Database.

For an example using the new Firebird 3 features, see section 3.

The User Management dialog lists all users managed by the default User Manager in the default
Security Database, provided that the logged in user is the SYSDBA or has the Admin Role
privilege. Otherwise, the list is limited to the logged in user only.

You can edit any other user information other than the User Name itself. The SYSDBA can also
grant the Admin Role to another user. Click on the “Save Changes” button to save edits. Edits are
automatically saved when a new row is selected.

The buttons at the base of the dialog allow you to:

• Add a “New User”: This opens the Add User Dialog through which the username and
password are entered. The remaining user details may be edited as above.

• Change Password: This opens the change password dialog which allows the password for
the currently selected user to be changed.

• Delete User: This will delete the currently selected user from the security database.

6

Illustration 4: User Management Dialog

 Using the IBX Services API for Database Administration

2.6 The “Database” Actions

Clicking on the “Database” button results in a popup menu being displayed from which you can
select one of the following actions:

• Show Statistics
• Validation
• Limbo Transaction Resolution
• Database Sweep
• Bring Database Online
• Shutdown Database

2.6.1 Show Statistics

This uses the TIBStatisticalService to display the database statistics for a selected database.

Selecting the action results in the “Select Database” dialog being displayed. Enter the name of the
database for which statistics are required. The results are displayed in the mainform's information
log.

2.6.2 Validation

This uses the TIBValidationService to validate (and repair) the database and is similar to the use of
the gfix utility for validation and repair. This
example is limited to running gfix with the
-v and -f options alone. A more complete
example is given in the next section.

Selecting this action brings up the “Select
Database” Dialog for validation. This
allows the database to be specified and
offers a choice between “Full Validation”
and “Online Validation”.

Online Validation was introduced in
Firebird 3 [2].

Clicking on OK starts the validation task.
The results are displayed in the
mainform's information log.

2.6.3 Limbo Transaction Resolution

Limbo transactions can occur when an application is updating two (or more) databases at the
same time, in the same transaction. At COMMIT time, Firebird will prepare each database for the
COMMIT and then COMMIT each database separately.

In the event of a network outage, for example, it is possible for part of the transaction to have been
committed on one database but the data on the other database(s) may not have been committed.
Because Firebird cannot tell if these transactions (technically sub-transactions) should be
committed or rolled back, they are flagged as being in limbo.

7

Illustration 5: Database Selection Dialog for Validation

Firebird Server Management using IBX

The TIBValidationService may be used to resolve Limbo Transactions.

Selecting this service first opens the “Select Database” dialog and once a database has been
selected, Limbo Transactions, if any are identified and displayed using the “Limbo Transactions”
dialog.

If any are found then they are displayed in the grid shown in Illustration 6 together with a
recommended resolution action. This can be overridden by selecting the requested resolution
action from the drop down list provided in the “Action” column.

The actual resolution is carried out by selecting one of the resolution actions given at the bottom of
the dialog:

• Commit All: All Limbo Transactions are committed regardless of the requested/recommend
resolution.

• Rollback All: All Limbo Transactions are rolled back regardless of the
requested/recommend resolution.

• Commit2 Phase All: This performs automatic two phase recovery regardless of the
requested/recommend resolution. See the gfix documentation for further information.

• Apply Selected Action: The requested/recommend resolution is performed for each
transaction.

The results are displayed in the Resolution Report.

8

Illustration 6: Limbo Transaction Resolution Dialog

 Using the IBX Services API for Database Administration

2.6.4 Database Sweep

Garbage, for want of a better name, is the detritus that Firebird leaves around in the database after a
rollback has been carried out. This is basically a copy of the row(s) from the table(s) that were being
updated (or deleted) by the transaction prior to the rollback.

Because Firebird uses multi-generational architecture, every time a row is updated or deleted, Firebird
keeps a copy in the database. These copies use space in the pages and can remain in the database for
some time.

In addition to taking up space in the database, these old copies can lead to increased transaction startup
times.

There are two types of garbage:

• Remnants from a committed transaction.

• Remnants from an aborted (rolled back) transaction.

These remnants are simply older copies of the rows that were being updated by the respective
transactions. The differences are that:

• Whenever a subsequent transaction reaches garbage from a committed transaction, that
garbage is automatically cleared out.

• Rolled back garbage is never automatically cleared out.

This means that on a database with a lot of rolled back transactions, there could be a large build up of
old copies of the rows that were updated and then rolled back.

Firebird will automatically sweep through the database and remove the remnants of rolled back
transactions and this has two effects:

• The database size is reduced as the old copies of rows are deleted.

• The performance of the database may be affected while the sweep is in progress.

A manual sweep of a database is also possible. The TIBValidationService component is used to
perform a manually requested Database Sweep.

After selecting the sweep action, the user is prompted to enter the database name of the database
on which to perform the sweep. The results are displayed in the mainform's information log.

9

Firebird Server Management using IBX

2.6.5 Database Shutdown

When a database has been
shutdown it is marked as
inaccessible to normal users.
This can be useful when
preparing for some
maintenance activities. The
TIBConfigService can be used
to perform a database
shutdown.

When the action is selected the
Database Shutdown dialog is
displayed.

This allows the user to select
the database to be shutdown as
well as the Shutdown options and delay time.

The shutdown timer is a delay timer that allows the server to wait for normal users to disconnect
from the database before performing the shutdown. If the command cannot complete in the
specified time, the shutdown is aborted. The shutdown action is performed either when the last
normal user has logged out or when the delay timer expires. It is performed immediately if no
normal users are logged in when the shutdown is requested.

The shutdown options are:

• Forced: The database is placed offline and any nromal users are forcibly disconnected with
possible data loss.

• Deny Attachments: No new connections are accepted during the delay period.
• Deny Transactions: No new connections or transactions are accepted during the delay

period.

In the latter two cases, if normal users are still logged in at the end of the delay period then the
shutdown fails.

The Services API implements shutdown as a synchronous call and does not return until it has
completed. In order to maintain responsiveness, the example application calls the shutdown
service in a separate thread.

2.6.6 Bringing a Database Backup Online

This is simply the reverse procedure to shutdown and marks the database as being online and
available for normal users. The TIBConfigService is also used to perform the service.

When selected, the user is prompted to enter the name of the database to being back online and
the service is invoked. It always returns immediately to report success or failure (usually because
the database was already online).

10

Illustration 7: Database Shutdown Dialog

 Using the IBX Services API for Database Administration

2.7 Using an Alternative Security Database

Firebird 3 has introduced the ability to configure alternative security databases to control access to
one or more groups of databases, separate from those databases for which access is controlled by
the default security database.

The example application initially connects to the server and implicitly uses the default security
database to authenticate the login. The user credentials thus entered should be valid for the
SYSDBA or a normal user with the Admin Role when using the default security database.

If later on an action is requested (e.g. database backup) for a database that uses and alternative
security database, the action will fail with an isc_sec_context EIBInterBaseError exception.

There are two strategies for handling this:

1. As described in [2], set up a mapping (in the database using the alternative security
database) that maps the logged in user (e.g. the SYSDBA) into the same user with the
same privileges in the alternative security database. The example should then work
seamlessly with no isc_sec_context EIBInterBaseError exception.

2. Login to the Services API with the isc_spd_expected_db login parameter specifying the
database using the alternative security database. In this case, the login user and password
must match the SYSDBA (or a user with the Admin Role) in the alternative security
database. Once logged in, the Services API may then be used for operations on the
database without incurring an isc_sec_context EIBInterBaseError exception.

The former strategy may be demonstrated using the example application, but has to be set up by
creating the necessary mapping using an appropriate SQL statement and executed using (e.g.) the
Firebird isql utility. However, the example application does demonstrate the second strategy.

The algorithm used is:

• An isc_sec_context EIBInterBaseError exception is raised when an attempt is made to
perform an action which requires login to the alternative security database.

• The exception is trapped. The current Services API connection is dropped and a new login
attempt made. The user is prompted with a revised login dialog indicating the reason for the
login and a request to enter valid user credentials for the alternative security database.

• When the actual login is performed, the “expected_db” parameter is added to the service
login parameters and with the database name as its value.

• Once the login succeeds, the original action is attempted again.

The purpose of the above is to demonstrate a strategy for managing the problem. Other, perhaps
more elegant algorithms may be possible. Note that if a service is later requested to a different
database using a different security database then the above is repeated.

2.8 How it works

This is intended to be a simple example of the use of the Services API. However, the packaging of
the API into separate services components can obscure some of the simplicity.

11

Firebird Server Management using IBX

The IBX IBServices unit and its components (e.g. TIBServerProperties) date from the original IBX
shipped with Delphi and were introduced in order to support the Services API which, itself, was
introduced with InterBase 6. The Services API uses a separate connection to that used to access a
database and is subject to a separate login exchange. Once the connection is opened, the
services protocol is used to:

• Start a service. Depending on the service this may give a single response or a series of
responses.

• Check the status of a running service

• Request a response from a running service.

Instead of providing a single component able to invoke any service and receive its responses, the
design delivered a set of components, each supporting a sub-range of the services available:

TIBBackupService The backup service supports database backup to gbak
format archives. Both server side and client side backup file
locations are supported.

TIBRestoreService The restore service supports database restore from gbak
format archives. Both server side and client side backup file
locations are supported.

TIBConfigService The configuration service allows database parameters to be
modified, including whether the database is online, sync
versus async writes, etc.

TIBServerProperties This service retrieves various server properties including
the server version information, server parameters and the
current status of database attachments.

TIBLogService This service supports the retrieval of the server log file
contents.

TIBStatisticalService This service supports the retrieval of per database
statistics.

TIBSecurityService This service supports management of the User Security
Database.

TIBValidationService This service supports the invocation of various database
repair actions, including validation and sweep. Limbo
Transactions can also be resolved.

TIBOnlineValidationService This service was introduced for Firebird 3 and provides for
a table level validation of a database. It implements
consistency checks that do not require exclusive access to
a database.

12

 Using the IBX Services API for Database Administration

2.8.1 Services API Login

While this approach gives a neat subdivision between the services available, it hides the fact that
they can all use a common connection. Indeed, the original design forced each component to
create (and login to) its own Services API connection. There was no mechanism for sharing the
same Services API connection.

This meant that either the program designer had to copy all the login parameters between each
component or force a separate user login for each component in use.

Note: an IBServices component logins into the service when its Active property is set to true.

2.8.2 IBX for Lazarus and the Services API

IBX for Lazarus 1.x kept the original IBX model for the Services API. However, IBX 2 repackaged
all low level functions, including use of the Services API into the fbintf package with separate
variants for the new Firebird 3 client library API and the legacy Firebird 2.x version implemented
using COM reference counted interfaces, The IBServices components became little more than
wrappers around the low level functions.

Each component now had a reference to the low level fbintf interface (the ServiceIntf property) and
this interface could be copied from one IBServices component to another allowing them to share
the same Services API connection and hence simplify the program using them, whilst still retaining
backwards compatibility.

However, the implementation still had two limitations: One was that that assigning the ServiceIntf
did not update any other properties which could now be inconsistent (although they would normally
be ignored). The other was that the original behaviour on setting the component's Active property
to false was retained. That is that the Services API connection was dropped – for every component
using it. That meant that care had to be taken as to when to set this property.

2.8.3 IBX 2.2 and the Services API

IBX 2.2 has introduced an “Assign” method to each of the IBServices components (inherited from
TPersistent). When this is used to assign one IBServices component to another it copies the
ServiceIntf and all the connection related properties from the source to the destination service thus
ensuring consistency.

IBX 2.2 has also changed the effect of setting the component's Active property to false. All this
does now is to set the ServiceIntf to nil. This changes the disconnect from a “first one out” to a “last
one out” strategy. That is when the ServiceIntf is shared, instead of being dropped the first time a
using component's Active property is set to false, it is only dropped when all using component's
have their Active property set to false. This is due to the interface being reference counted.

The example program makes full use of the Assign method to share the Sevices API connection
between the components.

2.8.4 User Management

The TIBSecurityService is not a TDataset descendent and cannot be used as the source for an
editable TDBGrid. In order to create an editable list of users, a TMemDataset is used as an
intermediary.

13

Firebird Server Management using IBX

When the dataset is opened, it uses the TIBSecurityService to get a list users from the server.
These are then added to the dataset, one per row. A TMemDataset is editable and this allows for
in-situ editing of user attributes, or even the deletion of an entire row.

Any such changes are applied to the security database in the BeforePost or BeforeDelete events
for the TMemDataset. In each case, the TIBSecurityService is used to apply the requested change.

The list of roles is sourced by a TIBQuery and generated from the RDB$ROLES virtual table joined
to the RDB$USER_PRIVILEGES table in order to identified which roles have been assigned to the
user. It is also in a master/detail relationship with the TMemDataset used to list the users which
allows it to automatically focus on the current user. Roles cannot be added or removed. However, it
is possible to grant/revoke a role from the currently selected user.

A TIBUpdate component is used to apply changes to the assigned roles. Its “apply” event handler
reviews the requested change and formats and executes a GRANT/REVOKE ROLE SQL
Statement as appropriate.

2.8.5 Limbo Transactions

A similar approach using a TMemDataset is used for Limbo Transaction resolution. In this case, the
source for the dataset rows is a TIBValidationService component and its LimboTransactionInfo
property. Changes made to the dataset are used to update the LimboTransactionInfo.

The TIBValidationService is used to apply the required resolution.

2.8.6 Using Alternative Security Databases

The only change introduced into IBX 2.2 in order to support alternative security databases is to
support the “expected_db” parameter on login. This directs the login to use the security database
configured for the database given as the parameter value.

This feature is used in the example program by running all service requests via a “wrapper”
method

TRunServiceProc = procedure of object;
function TMainForm.RunService(aService: TIBCustomService;
 RunProc: TRunServiceProc): boolean;

The semantic is to run the specified method (RunProc) and to prepare the specified service for use
with the method.

The wrapper method assumes that the IBServerProperties component is the “keeper of the
Services API connection” and was activated when the program started. It implements the following
algorithm:

1. If the requested service uses a database then its DatabaseName property is set to the
currently requested database.

2. The service is assigned the properties and service interface from the IBServerProperties
component.

3. “RunProc” is now run.

14

 Using the IBX Services API for Database Administration

4. If an isc_sec_context EIBInterBaseError exception is raised, the IBServerProperties.Active
is set to false and a new login attempt is made using the alternative login dialog and with
the expected_db parameter set to the requested database. Step 2 is repeated.

2.9 Summary

This example is intended to demonstrate use of the Services API and to demonstrate a strategy for
handling alternative security databases. However, in Firebird 3, use of the Services API for User
Management is deprecated and cannot anyway be used for alternative security databases. The
following example is intended to demonstrate database management in a more Firebird 3
compliant manner.

15

 The DBAdmin Tool

3
The DBAdmin Tool

The purpose of this example is to both demonstrate Database Management using IBX and to
provide a usable tool for Database Administration. It may be found in the ibx/examples/DBAdmin
directory.

Unlike the Services API example, the program is focused on a specific database. While it also uses
the Services API for server level functions they are always used in the context of the current
database. The program is intended to demonstrate:

• Access to Database Parameters and their management

• Database Backup and Restore

• Database File Management including Secondary Files and Shadow File sets

• Inspection and Management of Database Attachments

• Access to Database Statistics

• Database schema listing

• Access to Server Properties and the Server Log

• User Management

• Monitoring of User Mappings

• Monitoring of User/Role Access Rights including the identification of “stale” user rights.

• Database Validation and Repair

• Limbo Transaction Resolution.

The example is intended to meet the requirements for day-to-day Database Administration.
However, this is with the exception of the monitoring of user access logs. The lack of a standard
approach makes it difficult to show this in a general purpose tool.

17

Firebird Server Management using IBX

3.1 Running the Example

In the Lazarus IDE, open the project file ibx/examples/DBAdmin/DBAdmin.lpi. Compile and run.

The program starts by presenting a standard login dialog. By default it proposes to login to the
Firebird example employee database on the local server. This can be overridden to give a connect
string for any database to which you have access to.

Note: in contrast to the previous example which was concerned with Server Login, the full connect string
must be provided if the database is on a remote server. For those in doubt the connect string formats
supported are described in the Firebird 3 release notes [2].

A valid user name and password
must also be provided. This may be
the SYSDBA or could be any normal
user that has been granted the
RDB$ADMIN role (see 3.1.1) for the
database. This role is always
requested by this program.

A normal user may still log in but will
find many of the functions
inaccessible.

The database does not need to exist.
If the “Create Database...” checkbox
is selected then an empty database is
automatically created after a
successful login (provided the user is
permitted to create a database).

A so created empty database can
then be populated by restoring a
gbak format archive.

Following a successful login, the example program's main form is displayed (see Illustration 9).
This uses a TPageControl to structure the presentation into multiple pages.

3.1.1 The RDB$ADMIN role

The RDB$ADMIN role was introduced in Firebird 2.5 [3] in order to enable the transfer of

 “SYSDBA privileges to another user. Any user, when granted the role in a particular database, acquires
SYSDBA-like rights when attaching to that database with the RDB$ADMIN role specified.”

The RDB$ADMIN role does not have to be created and may be considered as being “built-in”. It is
granted and revoked in the same way as any other role. Only the SYSDBA or a user assuming the
RDB$ADMIN role can grant or revoke this role.

• Granting a user the RDB$ADMIN role for a given database allows them full SYSDBA
access for that database e.g. to take backups, take the database offline, put it back online,
etc. However, it does not allow them to manage other users.

• Granting a user the RDB$ADMIN role in the security database additionally allows them the
right to manage users in the security database. However, it does not permit them other

18

Illustration 8: Database Login Dialog

 The DBAdmin Tool

SYSDBA rights (e.g. database backup), if they do not also have the RDB$ADMIN role for
the database.

A user granted the RDB$ADMIN role in the security database only can only manage users using
the Services API. In Firebird 3, they cannot use the SEC$USERS table to list other users. They
need to be granted the RDB$ADMIN role in the current database before they can do this.

As with any other role, the user must assume the RDB$ADMIN role when they login or by using
the “SET ROLE RDB$ADMIN” statement.

3.2 Database Properties

The initial display shows the database properties.

These are sourced from:

• Database Information provided over the Database API connection (using the
TIBDatabaseInfo component), and

• The MON$DATABASE and SEC$GLOBAL_AUTH_MAPPING virtual tables.

• The TIBStatisticalService; used to read the database header information e.g. for the
shadow file status.

If the server is Firebird 2.5 or earlier, some of the information is not present (e.g. Pages Used) and
replaced with “n/a”.

19

Illustration 9: Database Administration Example Application

Firebird Server Management using IBX

Most of the information presented cannot be modified, the exceptions being:

• SQL Dialect

• Character Set (Firebird 3 and later)

• Linger Delay (Firebird 3 and later)

• Sweep Interval

• No. of Buffers

• All checkboxes (Auto Admin is available Firebird 2.5 and later)

In each case, the property may be directly edited and the underlying database property is updated
immediately after the change has been made.

• A database marked as a shadow database can be made into a normal database (Activate
Shadow function) but not vice-versa. That is the shadow database flag can be unchecked if
checked, but not the other way round.

• Unchecking the “Online” checkbox is the same as requesting a Database Shutdown (see
2.6.5) and uses the TIBConfigService. The reverse action brings the database back online.

• Auto Admin Mapping alllows Windows Administrators logged in using trusted authentication
to automatically be granted the RDB$ADMIN role.

3.2.1 Database Backup

The database backup function is an improved
version of that provided with the previous
example. It is invoked from the toolbar or the
Files menu. The function is used to backup the
current database only and cannot be used to
backup another database.

Both client and server side backups are
supported along with many gbak options
including the “No Database Triggers” option
introduced with Firebird 3.

The user must specify backup file.

Click on OK to start the backup. The dialog
changes to show the backup log.

On completion, the dialog may be closed.

20

Illustration 10: Database Backup Dialog

 The DBAdmin Tool

3.2.2 Database Restore

The database restore function is an improved
version of that provided with the previous
example. It is invoked from the toolbar or the
Files menu. The function is used to replace the
current database only and cannot be used to
create a new database.

Note: a new empty database can be created when
logging into a non-existent database.

The user must specify the backup file from
which the restore takes place. This file must
already exist.

The user is presented with the current
database Page Size and the number of Page
Buffers. These can be modified when a
database is restored. Beware: inappropriate
settings can adversely affect performance and
disk usage.

Both client and server side archive files are
supported along with many gbak options.

21

Illustration 11: Database Restore Dialog

Firebird Server Management using IBX

3.3 The Files Page

The Files Page is used to display information about which files are used for the database and also
allows secondary files to be added and the management of Shadow File sets. Metadata tables are
used to source the secondary file and shadow file set information.

3.3.1 Adding a Secondary File

If the database file is running out of usable space on its current filesystem then it is possible to add
secondary files on other filesystems so that the database can grow beyond the limits of a single
filesystem. This operation can only be performed when the database has been shutdown and is
exclusively available to the Database Administrator.

To add a secondary file, click on the “Add” button. This brings up the Add Secondary File dialog.

The filename must be a valid pathname on the
server and at a location that the server
administrator has permitted database files to
reside.

The “Starting After” should be set with reference to
the number of pages already allocated to the
database (see Database Properties) dialog. If you
choose to specify the starting point in MBs then the
starting page number will be calculated for you.

The “Length” should be left empty if this is the last file added and is always optional.

22

Illustration 12: The DBAdmin File Page

Illustration 13: Add Secondary File Dialog

 The DBAdmin Tool

The SQL statement “Alter Database Add File...” is used to add the secondary file. The
documentation of this statement [4] should be consulted for more information.

3.3.2 Shadow Sets

A shadow is an exact, page-by-page copy of a database. Once a shadow is created, all changes
made in the database are immediately reflected in the shadow. If the primary database file
becomes unavailable for some reason, the Firebird Server can automatically switch to the shadow.

Like a database, a shadow may be multi-file. The number and size of a shadow's files are not
related to the number and size of the files of database it is shadowing.

If an unrecoverable error occurs on the primary database file(s) then the server will convert a
shadow set to being the primary database. The subsequent action depends on the shadow mode
specified for the Shadow Set i.e.

• AUTO (the default value): shadowing ceases automatically as soon as a Shadow set
becomes unavailable either because it has been converted into the primary database or
for any other reason; all references to it are deleted from the database header and the
database continues functioning normally.

• CONDITIONAL: when the shadow becomes unavailable, the system will attempt to create
a new shadow to replace the lost one. If it does not succeed, a new shadow may need to
be created manually.

• MANUAL: when the shadow becomes unavailable, all attempts to connect to the database
and to query it will be rejected with an error message. The database will remain
inaccessible until either the shadow again becomes available or the database
administrator deletes it using the DROP SHADOW DDL statement.

Note: MANUAL should be selected if continuous shadowing is more important than uninterrupted operation
of the database.

Manual mode creates a problem for the DBAdmin Tool as it is prevented from logging into the
database if a MANUAL mode shadow becomes unavailable and is hence prevented from taking
the necessary recovery action.

Unavailability of a shadow is reported at database login time as an I/O exception plus a (hopefully)
descriptive message. However, this is not the only reason for an I/O exception at login. When such
an exception occurs, the user is presented with the error message and asked if they want to “kill”
all unavailable shadows (equivalent to running gfix with the -kill option). If they answer “yes” then
the Services API is used to kill all unavailable shadows (on the database) and a new login attempt
is made. If the user answers “no” then control returns to the login dialog.

Note: The kill unavailable shadows command is also available on the Database Repair tab.

3.3.2.1 Adding a Shadow Set

A new Shadow Set may be created at any time. The database does not have to be taken offline
and normal activity may continue while the shadow set is being prepared.

23

Firebird Server Management using IBX

Clicking on “Add Set” displays
the Add Shadow Set Dialog
(see Illustration 14). You need
to enter the full path for one or
more files in the server. These
files must reside in a location
that the server administrator
has configured as available for
use by Firebird. A Shadow Set
may comprise a single file or a
primary file plus secondary
files. In the latter case then
length of each file other than
the last must be given.

The Shadow Mode should be
selected (see above). And then
click on OK to create the shadow set.

This may take some time depending on the size of the database.

3.3.2.2 Dropping a Shadow Set

Select the Shadow Set to be dropped and click on remove Shadow Set. As with adding a shadow
set, this can be done at any time. You will be prompted whether or not to delete the shadow files as
well (Firebird 3 and later).

3.4 The Attachments Page

This page allows the DBA to monitor connections to the database (See Illustration 15).

A TIBDynamicGrid is used to display the list of attachments, which is sourced from the
MON$ATTACHMENTS virtual table. It can be sorted by any column.

In addition, any row can be expanded to reveal information about the connection that cannot be
accommodated on the main row.

A right click menu option allows a connection (other than the one used by the DBAdmin tool) to be
deleted. This is performed by a DML Delete statement acting on the current row of the table.

Another option on the right click menu allows the DBA to request that this tab is automatically
refreshed every five seconds in order to monitor the current set of attachments in near real time.

3.5 The Statistics Page

The statistics page allows the display of database statistics selected from a drop down list of
options.

• Header Only: Information sourced from the Database Header Page
• Performance and Operational: statistics sourced from the Database Information API
• Header and Data: Database Header plus data pages (tables)
• Header, Data and Indexes: Above plus indexes.
• All: As above but includes System tables.

24

Illustration 14: Add Shadow Set Dialog

 The DBAdmin Tool

3.6 Schema Page

This page uses TIBExtract to dump the current database metadata to a SynEdit read only view
with syntax highlighting. The page contents can be saved to a file.

The schema is by default extracted without grants to users other than “PUBLIC”. This is because
these are not considered part of the schema itself; a database with the same metadata in a
different organisation would have a different set of users. However, it is possible to include these
grants by checking the “Include Grants to Users” checkbox at the bottom left of the page.

3.7 The Server Page

The Server Tab is used to display the server properties and the server log. As with the Service API
example, this uses the TIBServerProperties and the TIBLogService to access the information.

3.8 The User Manager Page

The User Manager Page is designed to work with either the Services API or the SEC$USERS
Table. The former is used for Firebird 2.x servers or when the current user has the Admin Role
configured in the security database but has not been granted the RDB$ADMIN role for the current
database.

Note that when an Alternative Security Database has been configured for the current database, the list of
users in the SEC$USERS table comes from this database and not the default security database.

25

Illustration 15: Database Attachments Page

Firebird Server Management using IBX

At design time, TIBDynamicGrid used to display the user list has a superset of columns defined for
each of the different modes. When the database is opened, the server version is checked and the
appropriate set of columns made visible. The data source is directed either to a TMemDataset, or a
TIBQuery (for the SEC$USERS table) as appropriate.

Entries may be edited in-situ and the right click menu may be used to add or delete users, or to
change a user password.

The following attributes are given by a checkbox:

• Active: Only “active” users are permitted to login to a database.

• Admin: User has the Admin Role granted to the security database from which the user list is
sourced. (SYSDBA is automatically the administrator regardless of this setting).

• DB Creator: the user has the “Create Database” privilege granted to them.

• Logged in: the user is logged in at least once to the database.

When the source is the TMemDataSet, updates are applied as described in 2.8.4. When the
source is the TIBQuery then a TIBUpdate component is used to Add, Edit or Delete a user. This
generates and executes the appropriate CREATE/ALTER/DROP USER statements.

Note that when a new user is added, the User Manager Plugin (Firebird 3 only) can be selected
from a drop down list of plugins. This is a hard coded list given that there is no easy way to
determine the list of available User Manager Plugins.

The handling of assigned roles is also as described in 2.8.4.

26

Illustration 16: The User Management Tab

 The DBAdmin Tool

Before deleting a user, you should remove all roles from that user in each database in which they
have been granted a role. Otherwise, the user will appear as a stale user in the Access Rights
Page (see below).

3.9 The Access Rights Page

The purpose of the Access Rights Page is to allow the DBA to:

• Monitor the current access rights assignment in the database, and

• Identify and remove any “stale” user access rights.

The tab has two window panes. The left hand pane is used to display “subjects” to whom access
rights have been granted together with their dependent objects in a hierarchical display. The
hierarchy reflects the fact that some objects can be both subjects and objects (e.g. Roles and
Stored Procedures). There is also a top level grouping into object categories such as “Users”,
“Roles”, “Triggers”, etc.

A top level category only appears when access rights have been granted to an object in that
category.

The right hand pane displays the detailed access rights granted to the object selected in the left
hand pane. This lists, for each object to which access rights have been granted:

27

Illustration 17: Access Rights Page

Firebird Server Management using IBX

• The Object Type (e.g. Relation (Table), Procedure, Role, Exception, etc.)

• The Object Name

• Access Rights granted coded by their letter identifier and given as a list.

• Who granted the access right, and

• Whether the grant option was also given.

An editor panel is used to display the list of update columns and/or referenced columns, if
specified, below the current row. The Update and References privileges may be granted for a
restricted set of columns or to all columns. In the former case, the list of columns to which the
Update/References privilege is granted appears on the editor panel. If the Update/References
privilege is not granted, is not appropriate for the object, or applies to all columns then the list is
empty.

The editor panel appears automatically when a row is selected with a non-empty list of
update/references columns. It can also be revealed by clicking on a row's indicator column (to the
left of the row).

3.9.1 Stale Users

Access rights assigned to a user name do not require the user to exist when they are granted and
persist after a user has been deleted. The only check made is whether the current user has the
required access rights to perform an operation on a database object and the check is a simple
name match against the user names to which access rights have been assigned. A similar name
match occurs when a user assumes a role.

Note: Granting an access right to a non-existent role fails with an error.

For this reason it is possible for “stale access rights” to exist in a database for which there is no
matching user in the applicable security database. This may have occurred because:

a) A simple typing error resulting in an incorrect and non-existent user name when an access
right is assigned to a user.

b) The user has been deleted from the database without revoking their access rights.

c) A backup is restored which includes access rights to a user that had previously been
deleted, even when their access rights had been revoked in what was then the current
database. There is no option in the gbak utility to ignore access rights granted to non-
existent users on database restore.

The risk resulting from stale access rights is that a System Administrator may, at some later date,
create a new and entirely different user with the same user name who then has unintended access
to database objects.

It is preferable that stale access rights are removed as soon as possible as they risk a new user
being created with the same name who then inherits inappropriate access rights for their role.

28

 The DBAdmin Tool

On the Access Rights Page, stale users are indicated in the left hand pane by the text “(stale)”
appearing after their name and a red diagonal cross symbol to their left (see Illustration 18 where
the user “Wally” cannot be found in the list of users in the security database). When a stale user is
selected, the right hand pane lists the access rights they have been granted.

The DBA Tool can remove access rights from these (or any other) user. A “Revoke All” function
may be selected from the right click popup menu, in the left hand pane, and when invoked creates
and executes “Revoke” statements to remove all access rights granted to that user.

3.10 The Auth Mappings Page

Firebird 3 introduces the concept of “mapping rules”. These have two purposes:

a) To manage the mapping between users identified and authenticated by an external user
authentication mechanism (e.g. a Windows Security Support Provider) into Firebird users
and roles, and

b) To allow users identified and authenticated using one user authentication plugin/security
database to be mapped to users and roles in a database configured to use a different user
authentication plugin/security database.

In both cases, the mapping takes place after authentication. Thus, it is not possible to (e.g.) set up
a mapping that allows user authentication, at the point where a user connects to a database, to

29

Illustration 18: State Access Rights Indication

Firebird Server Management using IBX

take place using a different user authentication plugin/security database from that defined for the
database.

The purpose of the Auth Mappings Page is to allow a DBA to monitor and review both the local and
the global user authentication mappings. The list is read only and sourced from the
RDB$AUTH_MAPPING and the SEC$GLOBAL_AUTH_MAPPING tables.

It is only available for Firebird 3 or later.

3.11 The Database Repair Page

The purpose of the Database Repair Tab is to make available to the DBA Firebird's built in tools for
Database Validation and Repair. These are also accessible using the Firebird gfix utility [5]. The
DBA Tool uses the Services API for this purpose.

The functions available are:

• Database Sweep
• Online Validation
• Database Validation
• Kill Shadows

3.11.1 Database Sweep

This is invoked by selecting “Database Sweep” in the drop down box of Database Repair actions,
and clicking on the “Run” button. The output of the service is written to the “Validation Report”.

Database Sweep is described in more detail in 2.6.4.

3.11.2 Online Validation

The Online Validation Service was introduced in Firebird 3 in order to permit a limited set of
validation activities while the database is in normal use. When this service is selected in the drop
down box of Database Repair actions, a list of database tables also appears to the left of the page.
This allows the DBA to select a subset of the available tables for validation and which may be
useful in reducing the time taken for the activity with large databases by focusing on suspected
problems (see Illustration 19).

Click on “Run” to start Online Validation. The output of the service is written to the “Validation
Report”.

30

 The DBAdmin Tool

3.11.3 Database Validation

Database Validation (and Repair) is more comprehensive than Online Validation, and is described
as follows in the gfix documentation [5]:

Sometimes, databases get corrupted. Under certain circumstances, you are advised to validate the
database to check for corruption. The times you would check are:

• When an application receives a database corrupt error message.
• When a backup fails to complete without errors.
• If an application aborts rather than shutting down cleanly.
• On demand - when the SYSDBA decides to check the database.

Note: Database validation requires that you have exclusive access to the database. To prevent other
users from accessing the database while you validate it, use the gfix -shut command to shutdown the
database.

When a database is validated the following checks are made and corrected by default:

• Orphan pages are returned to free space. This updates the database.
• Pages that have been misallocated are reported.
• Corrupt data structures are reported.

31

Illustration 19: Online Validation Example

Firebird Server Management using IBX

When Database Validation is selected in the drop down list of Database Repair actions, the
“Validation Options” are enabled.

These allow the DBA to specify in addition to the basic action which:

validates the database and makes updates to it when any orphan pages are found. An orphan page is
one which was allocated for use by a transaction that subsequently failed, for example, when the
application aborted. In this case, committed data is safe but uncommitted data will have been rolled
back. The page appears to have been allocated for use, but is unused.

This option updates the database and fixes any corrupted structures.

• Validate Record Fragments: using this
option will validate, report and update at
both page and record level. Any
corrupted structures etc will be fixed.

• Read Only Validation: a read only
validation simply reports any problem
areas and does not make any changes
to the database.

• Ignore Checksums: Checksums are used to ensure that data in a page is valid. If the
checksum no longer matches up, then it is possible that a database corruption has
occurred. You can run a validation against a database, but ignore the checksums using the
this option.

Click on “Run” to start Database Validation
(corresponds to gfix being run with the -v option).
The output of the service is written to the
“Validation Report”. If any errors are reported,
the Phase Two “Database Repair” action may be
performed.

The list of available options will have changed to
“Validate Record Fragments” and “Ignore
Checksums” only. Either or none may be
selected. Click on the “Repair” button to perform
the database repair function (corresponds to gfix
run with the -m option.

3.11.4 Kill Shadows

This is a simple command that removes any unavailable database shadows. To use this function,
select it from the drop down list and click on the “Run” button.

This function corresponds to the gfix -kill command.

3.12 The Limbo Transactions Page

The purpose of this page is to permit a DBA to perform Limbo Transaction recovery when the
database is used as part of a two-phase commit over multiple databases. This function is
described in detail in 2.6.3.

32

Illustration 20: The Phase One Validation Options

Illustration 21: Database Repair Options

 The DBAdmin Tool

3.13 How It Works

This DBA Tool uses both the Database API and the Services API to communicate with the Firebird
Server with the Database API being the primary means of communications. The program is
structured into a “Backend” Data Module and a “Front End” form.

All operations are concentrated in the backend while the front end is largely concerned with
presentation. This approach means that the backend could be readily integrated with alternative
front ends in different user applications.

3.13.1 Database Connections

A Database Connection may be established in two ways:

1. At program start or when the DBA selects File->Open Database.

2. As an internal function when an action (e.g. Database Validation) requires that the
Database connection is closed before the action is run through the Services API. In this
case, the database connection is automatically re-opened after the action has been
completed with the user being aware that this has happened.

In the former case, a Login Dialog is always displayed allowing the user to select the database and
enter an appropriate user name and password. The program loops until successful login or the
user cancels.

In the second case, no login dialog is displayed and the previously entered user credentials are
used to connect to the database. Indeed, it is the existence of user credentials (user name and
password) that determines whether or not a login dialog is displayed. The user credentials are
cleared before case 1 above is invoked, but not before case 2.

3.13.2 Service API Login

It is normally necessary to connect to the Services API shortly after case 1 above of Database
Connection established. In this case the same user credentials are used.

When an alternative security database is in use then the expected_db option needs to be set
when connecting to the Services API. This is where having the database connection as the primary
connection has advantages. When it comes to establishing the Services API connection, the
Database Connection can be used to determine if an alternative security database connection is in
use (see the MON$DATABASE table) and, if so, the expected_db parameter is set to the current
database name. There should be no need to handle an isc_sec_context EIBInterBaseError
exception (see 2.8.6).

33

	1 Introduction
	1.1 References

	2 Using the IBX Services API for Database Administration
	2.1 Running the Example
	2.2 Database Backup
	2.3 Database Restore
	2.4 Server Log
	2.5 User Management
	2.6 The “Database” Actions
	2.6.1 Show Statistics
	2.6.2 Validation
	2.6.3 Limbo Transaction Resolution
	2.6.4 Database Sweep
	2.6.5 Database Shutdown
	2.6.6 Bringing a Database Backup Online

	2.7 Using an Alternative Security Database
	2.8 How it works
	2.8.1 Services API Login
	2.8.2 IBX for Lazarus and the Services API
	2.8.3 IBX 2.2 and the Services API
	2.8.4 User Management
	2.8.5 Limbo Transactions
	2.8.6 Using Alternative Security Databases

	2.9 Summary

	3 The DBAdmin Tool
	3.1 Running the Example
	3.1.1 The RDB$ADMIN role

	3.2 Database Properties
	3.2.1 Database Backup
	3.2.2 Database Restore

	3.3 The Files Page
	3.3.1 Adding a Secondary File
	3.3.2 Shadow Sets
	3.3.2.1 Adding a Shadow Set
	3.3.2.2 Dropping a Shadow Set

	3.4 The Attachments Page
	3.5 The Statistics Page
	3.6 Schema Page
	3.7 The Server Page
	3.8 The User Manager Page
	3.9 The Access Rights Page
	3.9.1 Stale Users

	3.10 The Auth Mappings Page
	3.11 The Database Repair Page
	3.11.1 Database Sweep
	3.11.2 Online Validation
	3.11.3 Database Validation
	3.11.4 Kill Shadows

	3.12 The Limbo Transactions Page
	3.13 How It Works
	3.13.1 Database Connections
	3.13.2 Service API Login

