
Registered in England Registration No. 2624328

Issue 1.2,
13 March 2017

McCallum Whyman Associates Ltd

EMail: info@ mccallumwhyman.com, http://www.mccallumwhyman.com

MWA Software

Firebird
Pascal API

Guide

COPYRIGHT

The copyright in this work is vested in McCallum Whyman
Associates Ltd. The contents of the document may be freely
distributed and copied provided the source is correctly
identified as this document.

© Copyright McCallum Whyman Associates Ltd (2016)
trading as MWA Software.

Disclaimer

Although our best efforts have been made to ensure that the
information contained within is up-to-date and accurate, no
warranty whatsover is offered as to its correctness and readers
are responsible for ensuring through testing or any other
appropriate procedures that the information provided is correct
and appropriate for the purpose for which it is used.

ii

CONTENTS Page

1 INTRODUCTION..1
1.1 REFERENCES..2
1.2 CHANGE HISTORY..2

1.2.1 Version 1.1..2
1.2.2 Version 1.2..2

2 INSTALLATION AND PREPARATION FOR USE...5
2.1 INSTALLATION UNDER LAZARUS..5
2.2 INSTALLATION UNDER FPC..6
2.3 INSTALLATION UNDER DELPHI..7
2.4 INSTALLING FIREBIRD...7
2.5 WHICH FIREBIRD API?..8

3 PROGRAMMING WITH THE FIREBIRD PASCAL API...9
3.1 USING THE API IN YOUR PROJECT..9
3.2 ACCESSING THE API..9
3.3 LOCATING THE FIREBIRD CLIENT LIBRARY...10

3.3.1 Under Linux...10
3.3.2 Under Windows..10
3.3.3 Under Darwin (OSX)...11
3.3.4 Overriding the Default Library Name...11

3.3.4.1 The FBLIB Environment Variable...11
3.3.4.2 The OnGetLibraryName Event Handler..12

3.4 API VERSION NUMBER..12
3.5 REFERENCE...13

4 WORKING WITH DATABASES...17
4.1 THE DATABASE PARAMETER BLOCK (DPB)..17

4.1.1 Reference..18
4.2 CREATING A NEW DATABASE...19
4.3 ATTACHING TO AN EXISTING DATABASE..19
4.4 CONTROLLING ACCESS TO THE DPB PASSWORD...20
4.5 DISCONNECTING...20
4.6 RECONNECTING..20
4.7 DROPPING A DATABASE..20
4.8 GETTING DATABASE INFORMATION...20
4.9 DATABASE ACTIVITY MONITOR..23
4.10 ATTACHING TO A DATABASE USING THE EMBEDDED SERVER...23
4.11 REFERENCE...25

5 WORKING WITH TRANSACTIONS...29
5.1 THE TRANSACTION PARAMETER BLOCK (TPB)...29
5.2 STARTING A TRANSACTION..31
5.3 STARTING A TRANSACTION ON MULTIPLE DATABASES...31
5.4 COMMITTING A TRANSACTION..32
5.5 TWO PHASE COMMIT...32
5.6 TRANSACTION ROLLBACK..32
5.7 RESTARTING A TRANSACTION...32
5.8 TRANSACTION ACTIVITY MONITOR...33
5.9 REFERENCE...33

6 WORKING WITH DYNAMIC SQL...35
6.1 DYNAMIC SQL AND THE FIREBIRD PASCAL API...35

6.1.1 Named Parameters...35
6.1.2 Column Names...36

6.2 SQL STATEMENT WITH NO INPUT OR OUTPUT...38
6.3 METADATA..38

6.3.1 Input Parameter Metadata...39
6.3.2 Output Metadata..41

6.4 SQL STATEMENTS WITH INPUT PARAMETERS ONLY..42
6.4.1 The IAttachment.ExecuteSQL method..43

iii

6.5 SQL STATEMENTS WITH OUTPUT...43
6.6 QUERY STATEMENTS...45
6.7 SIMPLIFIED QUERIES...46
6.8 PERFORMANCE OPTIMISATION..47
6.9 PERFORMANCE STATISTICS...48
6.10 REFERENCE...49

7 WORKING WITH BLOB DATA...51
7.1 BLOB METADATA..51

7.1.1 Output Metadata..51
7.1.2 Input Metadata...52

7.2 THE IBLOB INTERFACE...52
7.2.1 IBlob Reference..53

7.3 READING BLOB DATA...54
7.4 CREATING OR MODIFYING A BLOB...54
7.5 REMOVING A BLOB..55
7.6 USING BLOB FILTERS...55

8 WORKING WITH ARRAY DATA...57
8.1 ARRAY METADATA...57
8.2 THE IARRAY INTERFACE...58
8.3 READING ARRAY DATA...59
8.4 CREATING OR MODIFYING AN ARRAY..60
8.5 REDUCING ARRAY BOUNDS...61
8.6 REMOVING AN ARRAY..61
8.7 EVENT HANDLERS..61

9 WORKING WITH CHARACTER SETS..63
9.1 FIREBIRD CHARACTER SETS...63
9.2 THE DATABASE CONNECTION AND THE DEFAULT CHARACTER SET..64
9.3 CODE PAGES...64
9.4 TRANSLITERATION RULES..64
9.5 TEXT BLOB HANDLING...65

10 HANDLING ERROR CONDITIONS..67
10.1 EXCEPTIONAL ERROR HANDLING CASES...68
10.2 THE ISTATUS INTERFACE...68

11 WORKING WITH EVENTS..69
11.1 THE IEVENTS INTERFACE..69
11.2 ASYNCHRONOUS EVENT HANDLING..70
11.3 SYNCHRONOUS EVENT HANDLING..70

12 WORKING WITH SERVICES..71
12.1 THE SERVICE PARAMETER BLOCK (SPB)...71
12.2 ATTACHING TO THE SERVICE MANAGER..72

12.2.1 IServiceManager Reference...72
12.3 STARTING A SERVICE..73

12.3.1 The Service Request Block (SRB)...73
12.3.2 List of Services...74

12.4 QUERYING A SERVICE...74
12.4.1 The Service Query Parameter Block (SQRB)..75
12.4.2 The Service Request Block (SRB)...75

12.4.2.1 Running Services...76
12.4.2.2 Information Requests...76
12.4.2.3 Setting Properties...77

12.4.3 The Query Response...77
12.5 DETACHING FROM THE SERVICE MANAGER..78
12.6 BACKUP AND RESTORE SERVICES...78

12.6.1 Backup and Restore on the Server...78
12.6.2 Backup and Restore using a File on the Client System..79

13 DEPLOYMENT GUIDELINES...83
13.1 DEPLOYMENT ON WINDOWS..83

iv

13.1.1 Firebird 2.5 and Earlier...83
13.1.1.1 Firebird Client Only...83
13.1.1.2 The Embedded Firebird Server..84

13.1.2 Firebird 3.0 and Later..84
13.1.2.1 Firebird Client Only...84
13.1.2.2 Firebird Embedded Server...84

13.2 DEPLOYMENT ON LINUX...85
13.2.1 Firebird 2.5 and Earlier...85

13.2.1.1 Firebird Client only...85
13.2.1.2 Firebird Embedded Server...85

13.2.2 Firebird 3.0 and Later..85
13.2.2.1 Firebird Client Only...85
13.2.2.2 Firebird Embedded Server...85

APPENDIX A. PARAMETER BLOCKS...87

APPENDIX B. EXAMPLE PARSING OF THE SERVICE RESPONSE BLOCK..91

v

 Introduction

1
Introduction

The Firebird Pascal API Guide is a guide to the Firebird API created by MWA Software as Pascal
Language Bindings for accessing the Firebird Client API from a Pascal Program. The purpose of
these language bindings is to provide the API in a format where all data types for SQL data,
interface parameters and results are native Pascal types. The Pascal API is pitched at a similar
level and purpose to the IBPP Firebird API provided to the C++ world. The package is intended to
be suitable for use on any platform supported by the Free Pascal Compiler. The package is simply
known by the abbreviation fbintf. It is a required dependency for version 2 onwards of IBX for
Lazarus.

From release 2.0.2 onwards, fbintf also supports the Delphi Win32 compiler.

The API is intended to be simple to use and to place the minimum burden on the API user when it
comes to managing the Firebird client library and the various Pascal objects that are created to
provide the API. It is implemented as reference counted COM interfaces which, for the API user,
are as easy to use as other managed types such as AnsiStrings and dynamic arrays. The user only
needs to worry about accessing and using the interface; disposing of interfaces is performed
automatically whenever an interface goes out of scope.

Two interface implementations are provided. One is for the new Firebird 3 Client API and the other
for the legacy Firebird Client API used for Firebird 2.x and earlier. The Firebird 3 API
implementation is used whenever possible and the older API only if the Firebird 3 API is not
available (see also 2.5).

The remainder of this guide is concerned with the Installation of the language bindings and how the
Pascal API is used. The organisation of this guide has been deliberately based on the InterBase 6
API Guide. This is still the primary reference for the legacy Firebird 'C' API and provides a greater
depth of discussion than this guide is intended to provide. Readers may occasionally find it useful
to refer to the InterBase 6 API Guide and by using the same chapter headings the intention is to
provide easy cross-reference.

1

Firebird Pascal API (fbIntf) Guide

The motivations for developing these language bindings are:

• To provide a route for the updating of the IBX for Lazarus package to support the new
Firebird 3 API as well as providing continued support for the legacy Firebird API without
having to separately maintain two codebases.

• To provide a standard FCL level Firebird API for use with Free Pascal (FPC) and Delphi
without requiring the additional complexity introduced by the TDataset model.

• To provide access to the Firebird API using Pascal native data types without requiring the
user to be aware of bit orders or actual encodings.

• To provide a complete implementation of the Firebird API in Pascal.

This API is offered to the community as a standard Pascal API for all versions of the Firebird
Relational Database.

1.1 References

1. InterBase 6 API Guide (http://www.ibphoenix.com/files/60ApiGuide.zip)

2. Firebird 2.5 Language Reference
(http://firebirdsql.org/file/documentation/reference_manuals/fblangref25-
en/html/fblangref25.html)

3. InterBase 6 Data Definition Guide (http://www.ibphoenix.com/files/60DataDef.zip)

4. Firebird 3.0.1 Release Notes
(http://www.firebirdsql.org/file/documentation/release_notes/html/en/3_0/rlsnotes30.html

5. IBX for Lazarus (MWA Software – http://www.mwasoftware.co.uk/ibx)

1.2 Change History

1.2.1 Version 1.1

This version has been updated to include:

• API changes to IFirebirdAPI.CreateDatabase

• API addition: IStatement.GetPerfStatistics and IStatement.EnableStatistics

• API Addition: IAttachment.GetArrayMetaData

• API Version Number added.

• Clarification on the handling of Firebird Character set “NONE”. (see 9.4).

1.2.2 Version 1.2

Version 1.2 is updated to include API changes and guidance resulting from code changes to
support the Delphi Win32 compiler. This includes:

2

http://www.ibphoenix.com/files/60ApiGuide.zip
http://www.mwasoftware.co.uk/ibx
http://www.firebirdsql.org/file/documentation/release_notes/html/en/3_0/rlsnotes30.html
http://www.ibphoenix.com/files/60DataDef.zip
http://firebirdsql.org/file/documentation/reference_manuals/fblangref25-en/html/fblangref25.html
http://firebirdsql.org/file/documentation/reference_manuals/fblangref25-en/html/fblangref25.html

 Introduction

• All units now compiled using “mode delphi”.

• The AnsiString type is now used instead of the default “string” type. For FPC this is type
compatible with the previous version and implies no change. For Delphi, this enforces
AnsiString as the interface string type instead of the UTF-16 unicodestring that is used by
default for Delphi. As Firebird does not support UTF-16 and the preferred encoding is UTF-
8, the choice of AnsiString is thus appropriate for a Firebird interface.

• Delphi installation instructions.

3

 Installation and Preparation for Use

2
Installation and Preparation for Use

The software is provided as a source code product only and distributed under the InterBase Public
License and the compatible Initial Developer's Public License. Copies of both of these licences are
included as part of the source code package. The package itself is a compressed archive in either
tar.gz format or .zip format.

In order to use the Firebird Pascal API for development or operationally, the Firebird Client library
must also be installed on the same system.

2.1 Installation under Lazarus

If you are also using IBX for Lazarus then the fbintf package is automatically installed with IBX. The
following instructions are only relevant when installing the fbintf package without IBX.

To install under Lazarus, you must first expand the archive file in some suitable and permanent
location. This could be the Lazarus component directory, or some other directory that you set aside
for third party components.

Now open the Lazarus IDE and select the 'Package->Open Package File (*.lpk)' menu item. Now
locate and open the 'fbintf.lpk' file which should be found in the directory into which you expanded
the archive and within the 'fbintf' directory. The Package Manager Dialog should now appear as
shown below.

5

Firebird Pascal API (fbIntf) Guide

Click on the compile button to install. The package should compile without errors and is available
for immediate use. The package manager dialog may now be closed.

Note that the package is run time only and does not need to be installed into the IDE.

2.2 Installation under FPC

You can alternatively install the Firebird Pascal API as part of the FPC library and hence available
outside of Lazarus. Note that this is an alternative and if this installation approach is taken, the
package should not be installed under Lazarus. This option is intended for knowledgeable users
only.

The fbintf archive should be expanded into some temporary location. The top level directory
includes a “Makefile.fpc” file, and this can be used to create a Makefile suitable for the target
platform using the fpcmake utility. The “make” command can then be used to generate the
compiled units in the “lib” directory. These are optimised units with no debug information. The
object files can then be copied to your FPC library files directory.

For example, if you are running on Linux on an amd64 platform then the compiled units will be
found in the ./lib/x86_64-linux directory after running “make”. Assuming fpc 3.0.0, all fpc object
files are located in

/usr/lib/fpc/3.0.0/units/x86_64-linux

You may create a directory within this location for fbintf and copy the object files to it. For example:

6

Illustration 1: The Package Manager

 Installation and Preparation for Use

export FPCDIR=/usr/lib/fpc/`fpc -iV`
fpcmake
make
sudo mkdir /usr/lib/fpc/3.0.0/units/x86_64-linux/fbintf
sudo cp ./lib/x86_64-linux/* /usr/lib/fpc/3.0.0/units/x86_64-linux/fbintf

The files used to build fbintf may now be removed.

2.3 Installation under Delphi

Under Delphi, fbintf may be built and used as a runtime package.

To install under Delphi, you must first expand the archive file in some suitable and permanent
location. This could be the Delphi directory, or some other directory that you set aside for third
party components.

To build fbintf as a runtime package, open the fbintf.dproj file in the Delphi IDE and, in the Project
Manager window, right click on the “fbintf.bpl” entry and select “Build” from the drop down list. By
default, Delphi should compile the package and save it as “fbintf.bpl” in the package's installation
directory.

To use fbintf in your project, open your project in the Delphi IDE and, in the Project Manager
window, right click on the project name and select “options”. In the Project Options dialog, select
“Run-time Package” in the left hand window and add fbintf to the list of packages in the right hand
window.

If you select the list of run-time packages in the right hand window, a button should appear at the
right of the line. Click on this button and the “Run Time Package” dialog appears. Click on the
folder button and navigate to and select the “fbintf.bpl” file. Now click on the “Add” button to add
fbintf to the list of run time packages.

When you deploy your program, remember to include the “fbintf.bpl” file in the program's
application folder.

2.4 Installing Firebird

You need access to a minimum of the Firebird Client library in order to use the fbintf package. This
applies to both development and deployment. Guidelines for deployment are give in chapter 13.

On a development system, the recommended approach is to download a pre-compiled installation
package from http://www.firebirdsql.org and install the full system including examples. This will
ensure that the example “employee” database is both installed and available for use by the fbintf
testsuite, and a local server is available for testing. Firebird installation packages are available for
both Linux and Windows as will as OSX.

With Linux, it is also possible to use the packages provided with your distribution. However, these
will not necessarily be up-to-date. Under Debian/Ubuntu the example database is also provided as
a separate package and you will need to install this package as well as unpack the database from
a gzip archive and set the access permissions correctly before running the test suite.
Paradoxically, unless you are very familiar with Firebird and Linux, it is often easier to install the
firebirdsql package than the one from your distro.

After installation, you should check that the “employee” is correctly listed in the “aliases.conf file in
the Firebird installation folder. For example, with 32-bit Firebird under Windows, the file

7

http://www.firebirdsql.org/

Firebird Pascal API (fbIntf) Guide

C:\Program Files (x86)\Firebird\Firebird_2_5\aliases.conf

should contain the line:

employee = C:\Program Files (x86)\Firebird\Firebird_2_5\examples\empbuild\employee.fdb

2.5 Which Firebird API?

Firebird 3 introduces a new API while continuing support for the legacy API. Older versions only
support the legacy API. By default the fbintf package provides implementation support for both
APIs. The Firebird 3 API is used if available and the legacy API if not.

It is possible to limit fbintf at compile time to one or other API. This means that the choice is fully
predictable and avoids having to compile both APIs into the same program, whilst limiting your
application as to which versions of Firebird it is compatible with. However, if you know that you are
(e.g.) always going to ship with Firebird 3, then it may well make sense to limit the API choice at
compile time.

The compile time choice is made by defined symbols located at the head of the “IB.pas” file. These
are:

{$DEFINE USEFIREBIRD3API}
{$DEFINE USELEGACYFIREBIRDAPI}

Simply remove or comment out one or other of these symbols (e.g. by inserting a space between
{ and $ characters) in order to limit the choice of API. For example, modifying the above to:

{$DEFINE USEFIREBIRD3API}
{ $DEFINE USELEGACYFIREBIRDAPI}

will ensure that when compiled, only the Firebird 3 API is available for use.

8

 Programming with the Firebird Pascal API

3
Programming with the Firebird

Pascal API
There are no LCL dependencies and the Firebird Pascal API may be used from the Lazarus IDE or
any other development environment for FPC.

3.1 Using the API in your Project

If the package has been installed under Lazarus then you need to add the fbintf package to the list
of required packages for your application. The API creates additional threads in order to manage
Firebird Events and hence the Project's custom options should include “-dUseCThreads”.

If you are developing a console mode Pascal program outside of Lazarus then you should include
the “cthreads” unit as the first unit in your program file's uses clause.

All units that access the Firebird Client API must include the “IB” unit in their uses clause. Units that
make use of symbolic constants for Firebird Engine error codes should also include the
“IBErrorCodes” unit in their uses clause. These units were originally part of IBX and their names
reflect their origin.

3.2 Accessing the API

The IFirebirdAPI interface provides access to the FirebirdClientAPI. This, like all interfaces
provided by the API, is reference counted and hence automatically managed. The interface is
released when it goes out of scope and the interface user is not required to release or free the
interface.

This interface is provided by the function:

function FirebirdAPI: IFirebirdAPI;

9

Firebird Pascal API (fbIntf) Guide

The first time the function is called, it locates and loads the Firebird Client Library and then
determines which version of the Firebird API to use. If it can, it will load the Firebird 3 Client API,
otherwise and if this is not available, it will load the Firebird legacy API. A reference to the loaded
API is then returned. On subsequent calls to the function, the currently loaded API is always
returned.

If the function is unable to load the API, an exception is raised.

3.3 Locating the Firebird Client Library

The location of the Firebird Client Library depends upon the platform and the algorithm used is
different for Linux, Windows and Darwin. Each is discussed below. It is also possible to override
the default library name list (see 3.3.4).

3.3.1 Under Linux

The default list of Firebird Client Library names is given as a colon separated list:

For the Firebird 3 API:

libfbclient.so:libfbclient.so.2

For the Legacy API:

libfbembed.so:libfbembed.so.2.5:libfbembed.so.2.1:libfbclient.so:libfbclient.so.2

The FirebirdAPI function will try to load each in turn until it is successful. The Linux loader will, in
turn, look in the standard locations for the library. If the library is in a non-standard location then
this can be indicated by setting the LD_LIBRARY_PATH environment variable prior running the
program. e.g.

export LD_LIBRARY_PATH=/opt/firebird/lib:$LD_LIBRARY_PATH

The above can be run as part of a shell script and extends the exist path by telling the Linux loader
to look in “/opt/firebird/lib”. This has been chosen as an example, as it is a common location when
Firebird is installed from a package1 downloaded from http://www.firebirdsql.org.

3.3.2 Under Windows

The Firebird Pascal API uses the following algorithm to locate the Firebird DLL. The algorithm
terminates as soon as the library has been located:

1. When the Firebird Library is to be loaded, fbintf first looks in the same folder as the
application executable is located. It checks to see if fbembed.dll (the embedded server
DLL) is present here. If it is then this is loaded. If not then it checks to see if fbclient.dll is
present. If so, then it is loaded.

In the latter case, fbintf also sets the FIREBIRD environment variable to the path to this
folder, prior to loading the library. This has the effect of forcing the Firebird Client to look
for the firebird.conf and firebird.msg files in the same folder. They must thus also be
installed here. This is to ensure that the DLL uses the correct versions of these files. If
the FIREBIRD environment variable is not set then the DLL will use the Windows registry

1Note that if you install using the installation script provided with Firebird then the library files are installed in a standard
location and there is no need to set the LD_LIBRARY_PATH variable.

10

http://www.firebirdsql.org/

 Programming with the Firebird Pascal API

to find the files. If another Firebird installation is present on the same system this may
point to a different version of these files.

2. If the FIREBIRD environment variable is set (prior to step 1) then the directory this points
to is searched for the FB Client DLL and then the underlying "bin" directory

3. fbintf uses the Windows Registry to locate the most recent Firebird installation. It opens
the registry key HKEY_LOCAL_MACHINE\SOFTWARE\Firebird Project\Firebird
Server\Instances, and then reads the “Default Instance” string value. This is then
assumed to be the full path Firebird installation. If the fbclient dll is present in this folder's
“bin” subfolder, then the DLL is loaded.

Note that in this case, the FIREBIRD environment variable is not set as the Firebird Client Library
will also use the same registry entries to locate its support files.

4. fbintf now looks in the default installation folders for first Firebird 3.0, then Firebird 2.5
and finally Firebird 2.1. These are <Program Files Folder>\Firebird\Firebird_2_x

5. fbintf then uses the Windows Path to search for and load fbclient.dll.

6. If the DLL is still not found, then in quiet desperation, fbintf will attempt to load the legacy
InterBase gds32.dll again using the Windows Search Path.

In practice, case 1 above should be used for deployed applications, whilst case 3 is the preferred
approach for a development system. Case 2 is a special case for unusual installations, while the
remaining cases are really attempts to get something to work on a broken system.

3.3.3 Under Darwin (OSX)

Darwin is treated as an extension of the Unix algorithm. If the standard unix search algorithm fails
to the find the Firebird library then the loader will try:

/Library/Frameworks/Firebird.framework/Firebird

and then

/Library/Frameworks/Firebird.framework/Libraries/libfbclient.dylib

in the hope of finding the Firebird client library.

3.3.4 Overriding the Default Library Name

In cases where the above algorithm will fail to find the Firebird Client library then two approaches
are available to explicitly direct fbintf to the Firebird Client library instead of using the above
algorithm.

3.3.4.1 The FBLIB Environment Variable

If this environment variable is set, then it is assumed to identify by an absolute or relative path, the
pathname of the Firebird Client library. The fbintf loader will try to load this library. If this fails then
no further attempt is made to load the Firebird Client Library.

11

Firebird Pascal API (fbIntf) Guide

Note that this feature has to be explicitly enabled. The AllowUseOfFBLIB variable is defined in the IB unit
and defaults to false. It must be set to true before the Firebird Pascal Client API is accessed in order to
enable use of the FBLIB environment variable.

3.3.4.2 The OnGetLibraryName Event Handler

The OnGetLibraryName event handler is defined in the IB unit and has the type:

TOnGetLibraryName = procedure(var libname: string);

If this event handler is set before the first call the the Firebird Pascal Client API then it is called
and should return the absolute or relative path, the pathname of the Firebird Client library. The
fbintf loader will try to load this library. If this fails then no further attempt is made to load the
Firebird Client Library. If the event handler returns an empty libname then it is ignored.

3.4 API Version Number

The IB.pas file includes API version information as compile time constants. These can be
referenced from other units to modify behaviour according to the API Version used.

These constants are:

 FBIntf_Major = 1;
 FBIntf_Minor = 0;
 FBIntf_Release = 0;
 FBIntf_Version = '1.0.0';

12

 Programming with the Firebird Pascal API

3.5 Reference

 IFirebirdAPI = interface
 {Database connections}
 function AllocateDPB: IDPB;
 function OpenDatabase(DatabaseName: AnsiString; DPB: IDPB;
 RaiseExceptionOnConnectError: boolean=true): IAttachment;
 function CreateDatabase(DatabaseName: AnsiString; DPB: IDPB;
 RaiseExceptionOnError: boolean=true): IAttachment; overload;
 function CreateDatabase(sql: AnsiString; aSQLDialect: integer;
 RaiseExceptionOnError: boolean=true): IAttachment; overload;

 {Start Transaction against multiple databases}
 function AllocateTPB: ITPB;
 function StartTransaction(Attachments: array of IAttachment;
 TPB: array of byte; DefaultCompletion:
 TTransactionAction): ITransaction; overload;
 function StartTransaction(Attachments: array of IAttachment;
 TPB: ITPB; DefaultCompletion: TtransactionAction):
 ITransaction; overload;

 {Service Manager}
 function HasServiceAPI: boolean;
 function AllocateSPB: ISPB;
 function GetServiceManager(ServerName: AnsiString; Protocol: TProtocol;
 SPB: ISPB): IServiceManager;

 {Information}
 function GetStatus: IStatus;
 function GetLibraryName: string;
 function IsEmbeddedServer: boolean;
 function HasRollbackRetaining: boolean;
 function GetImplementationVersion: AnsiString;

 {Firebird 3 API}
 function HasMasterIntf: boolean;
 function GetIMaster: TObject;

 {utility}
 function GetCharsetName(CharSetID: integer): AnsiString;
 function CharSetID2CodePage(CharSetID: integer;
 var CodePage: TSystemCodePage): boolean;
 function CodePage2CharSetID(CodePage: TSystemCodePage;
 var CharSetID: integer): boolean;
 function CharSetName2CharSetID(CharSetName: AnsiString;
 var CharSetID: integer): boolean;
 function CharSetWidth(CharSetID: integer;
 var Width: integer): boolean;
end;

13

Firebird Pascal API (fbIntf) Guide

Method Use

AllocateDPB Allocates an empty Database Parameter Block
(DPB) (see 4.1).

OpenDatabase Attach to an existing Database (see 4.3)

CreateDatabase Create a new Database (see 4.2).

AllocateTPB Allocate a Transaction Parameter Block (TPB) (see
5.1)

StartTransaction Start a new transaction (see 5.3).

HasServiceAPI Query whether the Service API is supported by the
Firebird Client API.

AllocateSPB Allocate a Service Parameter Block (SPB) (see
12.1)

GetServiceManager Attach to the Service Manager (see 12.2)

GetStatus Returns the IStatus interface (see 10.2).

GetLibraryName Returns the filename (without the path) of the file
containing the loaded Firebird Client Library.

IsEmbeddedServer Returns True if the Firebird Client library also
provides an embedded server.

HasRollbackRetaining True if the Firebird Client API supports
RollbackRetaining

GetImplementationVersion Returns '2.5' for the legacy API, or '3.x' for the
Firebird 3 API, where 'x' is replaced by the API
version returned by the Client Library.

HasMasterIntf Returns true if the Firebird 3 IMaster “interface” is
available.

GetIMaster If the Firebird 3 IMaster “interface” is available this
returns a reference to the IMaster “interface”.

Note this is typed as a TObject in order to avoid having
to make the IB unit dependent on the Firebird 3 API, and
must be cast to IMaster before use.

14

 Programming with the Firebird Pascal API

Method Use

GetCharsetName Lookup the name of the Character set that
corresponds to a Firebird Character Set ID.

CharSetID2CodePage Lookup the Code Page that corresponds to a
Firebird Character Set ID.

CodePage2CharSetID Lookup the Firebird Character Set ID that
corresponds to a Code Page.

CharSetName2CharSetID Lookup the Firebird Character Set ID that
corresponds to a Character Set Name.

CharSetWidth Lookup the Character Set width that corresponds to
a Firebird Character Set ID.

15

 Working with Databases

4
Working with Databases

All Database Connections are managed using the IAttachment interface. This interface is returned
by a call to the IFirebirdAPI.OpenDatabase or the IFirebirdAPI.CreateDatabase methods. In each
case, a Database Parameter Block (DPB) must be provided as a parameter to the call.

4.1 The Database Parameter Block (DPB)

The DPB is used to pass various parameters to an OpenDatabase or CreateDatabase method.
These include the User Name and Password, the default Character Set and the SQL Dialect.

Building a DPB is simple enough. The IFirebirdAPI.AllocateDPB method is used to allocate an
interface to an empty DPB (IDPB2) and this interface's Add method is used to add parameters to
the block:

IDPB = interface
 function getCount: integer;
 function Add(ParamType: byte): IDPBItem;
 function getItems(index: integer): IDPBItem;
 function Find(ParamType: byte): IDPBItem;
 property Count: integer read getCount;
 property Items[index: integer]: IDPBItem read getItems; default;
end;

Note that once a parameter has been added to the parameter block, an interface to it (IDPBItem) is returned.
This interface can be accessed later using the find method. It is also possible to enumerate the existing
parameters using the getCount method and Items property. For example,

2See also Appendix A.

17

Firebird Pascal API (fbIntf) Guide

var MyDPB: IDPB;
begin
 MyDPB := FirebirdAPI.AllocateDPB;
 MyDPB.Add(isc_dpb_user_name).AsString := 'SYSDBA';
 MyDPB.Add(isc_dpb_password).AsString := 'masterkey';
 MyDPB.Add(isc_dpb_lc_ctype).AsString := 'UTF8';
 MyDPB.Add(isc_dpb_set_db_SQL_dialect).AsByte := 3;

is a typical example of the use of IDPB to populate a DPB prior to attaching to the database.

Note that the parameter to the Add method is one of the DPB symbolic constants defined by the Firebird
API. The data type is dependent on the parameter.

The IDPBItem interface is defined as:

IDPBItem = interface(IParameterBlockItem) end;

It is defined by subclassing the IParameterBlockItem interface (see) Getter and setter methods are
defined for string, integer and byte parameters, together with corresponding properties. The
parameter type (e.g. isc_dpb_user_name) can be queried using the getParamType method. The
following provides an example of enumerating a DPB to print out each parameter's value:

procedure TTestBase.PrintDPB(MyDPB: IDPB);
var i: integer;
begin
 writeln('DPB');
 writeln('Count = ', MyDPB.Count);
 for i := 0 to MyDPB.Count - 1 do
 writeln(MyDPB[i].getParamType,' = ', MyDPB[i].AsString);
 writeln;
end;

Note that all parameter types can be returned as a string value.

4.1.1 Reference

The following symbolic constants may be used in a DPB:

Constant Type Definition

isc_dpb_user_name String Login User Name

isc_dpb_password String Login Password

isc_dpb_lc_ctype String Default Character Set Name

isc_dpb_sql_role_name String Login Role name

isc_dpb_sql_dialect Byte Default SQL Dialect (1 or 3)

isc_dpb_page_size Integer Database Page Size (create database only)

Other symbolic constants are available for special use (e.g. gfix type operations). See the
InterBase 6 API Guide for more information.

18

 Working with Databases

4.2 Creating a New Database

A new database is created using the IFirebirdAPI.CreateDatabase method. On a successful
completion, this creates a database and returns an IAttachment Interface providing access to the
connection to the newly created database. This function comes in two variants. The first is similar
to OpenDatabase (see below) and uses a DPB to provide the database parameters.

function CreateDatabase(DatabaseName: AnsiString; DPB: IDPB;
 RaiseExceptionOnError: boolean=true): IAttachment;

In this case, the DPB provides the login credentials for the user that is to become the database
owner. The connection Default Character set becomes that defined for the database. The database
page size DPB parameter (isc_dpb_page_size) is also recognised and used when creating the
database.

The DatabaseName is either a path to the local database filename, or a connect string in the form:

serverName:aliasOrPath

where “serverName” is the domain name for the Firebird Server (localhost is permitted) and the
“aliasOrPath” is either a valid database alias name defined in the server's “aliases.conf” file or the
full path to the database file on the server.

If RaiseExceptionOnError is false then any errors are silently ignored and a nil interface reference
is returned. Otherwise, if an error occurs then an exception is raised.

The second variant provides a means to create a database using the “Create Database” SQL
statement. This is:

function CreateDatabase(sql: AnsiString; aSQLDialect: integer;
 RaiseExceptionOnError: boolean=true): IAttachment; overload;

In this case, the sql parameter must provide a “Create Database” SQL statement as described in
the Firebird Language Guide.

4.3 Attaching to an Existing Database

You can attached to existing database using the IFirebirdAPI.OpenDatabase method. On
successful completion, this opens a connection to the database and returns an IAttachment
Interface providing access to it.

function OpenDatabase(DatabaseName: AnsiString; DPB: IDPB;
 RaiseExceptionOnConnectError: boolean=true): IAttachment;

In this case, the DPB provides the login credentials for the user that is logging into the database.
The user must have the necessary access rights for access to the database.

The DatabaseName is as above and must identify an existing database.

If RaiseExceptionOnError is false then any errors are silently ignored and a nil interface reference
is returned. Otherwise, if an error occurs then an exception is raised.

19

Firebird Pascal API (fbIntf) Guide

4.4 Controlling access to the DPB Password

The password added to a DPB is kept in memory and in clear. It can be accessed after a database
has been opened. If the IAttachment interface is passed to an untrusted user then this could be a
problem. To avoid this potential security hazard, the password should be invalidated after the
connection is opened e.g.

var MyAttachment: IAttachment;
begin
 …
 MyAttachment := IFirebirdAPI.OpenDatabase 'path to database',MyDPB);
MyDPB.Find(isc_dpb_password).AsString := 'xxxxxxxx';

4.5 Disconnecting

An IAttachment interface is returned for an active connection. This connection can be terminated at
any time by calling the IAttachment.Disconnect method. This terminates the connection but does
not invalidate the interface which can still be used to reconnect to the database.

Prior to a database being disconnected, all active transactions are closed using their default
completion.

4.6 Reconnecting

After a database connection has been terminated, the IAttachment.Connect method may be used
to reconnect the attachment to the same database. On successful completion, the connection has
been restored.

Note that if the password has been invalidated as discussed above in 4.4, then the connect will fail under the
password is restored e.g.

MyAttachment.getDPB.Find(isc_dpb_password).AsString := 'masterkey';
MyAttachment.Connect;

4.7 Dropping a Database

The IAttachment.DropDatabase method can be used to drop an existing database, if the logged in
user has sufficient privilege to drop the database. After this method is called, the database file on
the server is removed, the connection is disconnected and any further calls to this attachment
interface instance are undefined. For example:

MyAttachment.DropDatabase;
MyAttachment := nil; {ensure no further use}

Prior to a database being dropped, all active transactions are closed using their default completion.

4.8 Getting Database Information

The IAttachment interface also provides access various database statistics and other information
using the IAttachment.GetDBInformation method. This method takes a list of request items as its
parameter and returns an IDBInformation interface providing access to the requested information.

Information is requested using one of the following DB Information constants. Either a single item
is requested, or a set of information items is requested:

20

 Working with Databases

isc_info_db_id Database File Name and site name

isc_info_allocation Number of database pages allocated

isc_info_base_level Database Version (level) number

isc_info_implementation Database Implementation Number

isc_info_no_reserve Is space reserved for backup records

isc_info_ods_minor_version ODS minor version number

isc_info_ods_version ODS version number

isc_info_page_size Number of bytes per page

isc_info_version Database implementation version no.

isc_info_current_memory Amount of server memory (in bytes) currently in use

isc_info_forced_writes Number specifying the mode in which database writes are
performed (0 for asynchronous, 1 for synchronous)

isc_info_max_memory Maximum amount of memory (in bytes) used at one time since
the first process attached to the database

isc_info_num_buffers Number of memory buffers currently allocated

isc_info_sweep_interval Number of transactions that are committed between “sweeps” to
remove database record versions that are no longer needed

isc_info_user_names List of logged in users.

isc_info_fetches Number of reads from the memory buffer cache

isc_info_marks Number of writes to the memory buffer cache

isc_info_reads Number of page reads

isc_info_writes Number of page writes

isc_info_backout_count Number of removals of a version of a record

isc_info_delete_count Number of database deletes since the database was last

21

Firebird Pascal API (fbIntf) Guide

attached

isc_info_expunge_count Number of removals of a record and all of its ancestors, for
records whose deletions have been committed

isc_info_insert_count Number of inserts into the database since the database was last
attached

isc_info_purge_count Number of removals of old versions of fully mature records
(records that are committed, so that older ancestor versions are
no longer needed)

isc_info_read_idx_count Number of reads done via an index since the dataase was last
attached

isc_info_read_seq_count Number of sequential sequential table scans (row reads) done on
each table since the database was last attached

isc_info_update_count Number of database updates since the database was last
attached

isc_info_db_SQL_Dialect Get Database SQL Dialect

The InterBase 6.0 API Guide provides more information on each of the above.

IDBInformation is a simple interface providing access to the buffer containing the information
requested:

IDBInformation = interface
 function GetCount: integer;
 function GetItem(index: integer): IDBInfoItem;
 function Find(ItemType: byte): IDBInfoItem;
 property Count: integer read GetCount;
 property Items[index: integer]: IDBInfoItem read getItem; default;
 end;

This interface can be used to enumerate the individual information items requested. Each item is
returns as an IDBInfoItem:

22

 Working with Databases

 IDBInfoItem = interface
 function getItemType: byte;
 function getSize: integer;
 procedure getRawBytes(var Buffer);
 function getAsString: AnsiString;
 function getAsInteger: integer;
 procedure DecodeIDCluster(var ConnectionType: integer;
 var DBFileName, DBSiteName: AnsiString);
 function getAsBytes: TByteArray;
 procedure DecodeVersionString(var Version: byte; var VersionString: AnsiString);
 function getOperationCounts: TDBOperationCounts;
 procedure DecodeUserNames(UserNames: TStrings);

 {user names only}
 function GetCount: integer;
 function GetItem(index: integer): IDBInfoItem;
 function Find(ItemType: byte): IDBInfoItem;
 property AsInteger: integer read getAsInteger;
 property AsString: AnsiString read GetAsString;
 property Count: integer read GetCount;
 property Items[index: integer]: IDBInfoItem read getItem; default;
 end;

Each DB Information item can be a single value or a set of values that can itself be enumerated.
Getter methods are provided for each data type that can be returned. Including the following
special cases:

• DecodeIDCluster is used to decode information returned for information type
isc_info_db_id.

• DecodeVersionString is used to decode information returned for isc_info_base_level

• getOperationCounts is used for returned operation counts (isc_info_backout_count onwrds)

• DecodeUserNames may be used for isc_info_user_names.

• GetAsBytes is used for isc_info_base_level and isc_info_implementation.

4.9 Database Activity Monitor

A simple means of polling for database API activity is provided by the IAttachment.HasActivity
method. This returns true if any activity has taken place over this connection since the last time the
method was called, and false otherwise.

This may be used to automatically disconnect idle connections after some period has elapsed.

4.10 Attaching to a Database using the Embedded Server

When running on a Unix platform, fbint sets up the local environment to avoid file permissions
issues with the Firebird lock and temporary directories. That is, it will create on initialisation, in the
default temporary file directory (typically /tmp under Linux), a directory called
“Firebird_<username>, where <username> is the current login user name and, unless they are
already defined, set the FIREBIRD_TMP and FIREBIRD_LOCK environment variables to point to
this directory.

23

Firebird Pascal API (fbIntf) Guide

If your database path consists only of a path to a file on your local system and the embedded
server is available then Firebird will attempt to attach to the database without connecting to the
server. For this to be successful:

• Under Linux, the user name and password must not be present in the DPB.

• Under Windows, a user name and password should be present in the DPB. However, these
should be set to the default of “SYSDBA “and “masterkey” respectively.

24

 Working with Databases

4.11 Reference

IAttachment = interface
 function getDPB: IDPB;
 function AllocateBPB: IBPB;
 procedure Connect;
 procedure Disconnect(Force: boolean=false);
 function IsConnected: boolean;
 procedure DropDatabase;
 function StartTransaction(TPB: array of byte;
 DefaultCompletion: TTransactionAction=taCommit): ITransaction; overload;
 function StartTransaction(TPB: ITPB;
 DefaultCompletion: TTransactionAction=taCommit): ITransaction; overload;
 procedure ExecImmediate(transaction: ITransaction; sql: AnsiString;
 SQLDialect: integer); overload;
 procedure ExecImmediate(TPB: array of byte; sql: AnsiString;
 SQLDialect: integer); overload;
 procedure ExecImmediate(transaction: ITransaction; sql: AnsiString); overload;
 procedure ExecImmediate(TPB: array of byte; sql: AnsiString); overload;
 function ExecuteSQL(TPB: array of byte; sql: AnsiString; SQLDialect: integer;
 params: array of const): IResults; overload;
 function ExecuteSQL(transaction: ITransaction; sql: AnsiString;
 SQLDialect: integer; params: array of const): IResults; overload;
 function ExecuteSQL(TPB: array of byte; sql: AnsiString;
 params: array of const): IResults; overload;
 function ExecuteSQL(transaction: ITransaction; sql: AnsiString;
 params: array of const): IResults; overload;
 function OpenCursor(transaction: ITransaction; sql: AnsiString;
 aSQLDialect: integer): IResultSet; overload;
 function OpenCursor(transaction: ITransaction; sql: AnsiString;
 aSQLDialect: integer;
 params: array of const): IResultSet; overload;
 function OpenCursor(transaction: ITransaction;
 sql: AnsiString): IResultSet; overload;
 function OpenCursor(transaction: ITransaction; sql: AnsiString;
 params: array of const): IResultSet; overload;
 function OpenCursorAtStart(transaction: ITransaction; sql: AnsiString;
 aSQLDialect: integer): IResultSet; overload;
 function OpenCursorAtStart(transaction: ITransaction; sql: AnsiString;
 aSQLDialect: integer;
 params: array of const): IResultSet; overload;
 function OpenCursorAtStart(transaction: ITransaction;
 sql: AnsiString): IResultSet; overload;
 function OpenCursorAtStart(transaction: ITransaction; sql: AnsiString;
 params: array of const): IResultSet; overload;
 function OpenCursorAtStart(sql: AnsiString): IResultSet; overload;
 function OpenCursorAtStart(sql: AnsiString;
 params: array of const): IResultSet; overload;
 function Prepare(transaction: ITransaction; sql: AnsiString;
 aSQLDialect: integer): IStatement; overload;
 function Prepare(transaction: ITransaction;
 sql: AnsiString): IStatement; overload;
 function PrepareWithNamedParameters(transaction: ITransaction; sql: AnsiString;
 aSQLDialect: integer;
 GenerateParamNames: boolean=false): IStatement; overload;
 function PrepareWithNamedParameters(transaction: ITransaction; sql: AnsiString;
 GenerateParamNames: boolean=false): IStatement; overload;

 {Events}
 function GetEventHandler(Events: TStrings): IEvents; overload;
 function GetEventHandler(Event: AnsiString): IEvents; overload;

 {Blob - may use to open existing Blobs. However, ISQLData.AsBlob is
 preferred}

25

Firebird Pascal API (fbIntf) Guide

 function CreateBlob(transaction: ITransaction; RelationName,
 ColumnName: AnsiString; BPB: IBPB=nil): IBlob; overload;
 function CreateBlob(transaction: ITransaction;
 BlobMetaData: IBlobMetaData; BPB: IBPB=nil): IBlob; overload;
 function CreateBlob(transaction: ITransaction; SubType: integer;
 CharSetID: cardinal=0; BPB: IBPB=nil): IBlob; overload;
 function OpenBlob(transaction: ITransaction; RelationName,
 ColumnName: AnsiString; BlobID: TISC_QUAD; BPB: IBPB=nil): IBlob;

 {Array - may use to open existing arrays. However, ISQLData.AsArray is
 preferred}

 function OpenArray(transaction: ITransaction; RelationName,
 ColumnName: AnsiString; ArrayID: TISC_QUAD): IArray;
 function CreateArray(transaction: ITransaction; RelationName,
 ColumnName: AnsiString): IArray;
overload;
 function CreateArray(transaction: ITransaction;
 ArrayMetaData: IArrayMetaData): IArray; overload;
 function CreateArrayMetaData(SQLType: cardinal; Scale: integer; size: cardinal;
 charSetID: cardinal; dimensions: cardinal;
 bounds: TArrayBounds): IArrayMetaData;

 {Database Information}
 function GetSQLDialect: integer;
 function GetBlobMetaData(Transaction: ITransaction; tableName,
 columnName: AnsiString): IBlobMetaData;
 function GetArrayMetaData(Transaction: ITransaction; tableName,
 columnName: AnsiString): IArrayMetaData;
 function GetDBInformation(Requests: array of byte)
 : IDBInformation; overload;
 function GetDBInformation(Request: byte): IDBInformation; overload;
 function HasActivity: boolean;
 end;

Method Use

getDPB Returns a reference to the DPB used to connect
to the database.

AllocateBPB Allocates an empty Blob Parameter Block (BPB)
(See 7.6).

Connect Reconnect to the database following a
Disconnect (see 4.6)

Disconnect Disconnect from the database. If “force” is true
then errors are ignored (see 4.5).

IsConnected Returns true if database connection is active.

DropDatabase Requests that the current database is closed
and deleted from the server (see 4.7).

StartTransaction Starts a new transaction on the database (see
5.2).

26

 Working with Databases

Method Use

ExecImmediate Execute an SQL Statement with no input or
output. (see 6.2)

ExecuteSQL Executes an non-Select SQL Statement with
input parameters and optional output (see
6.4.1).

OpenCursor Execute an SQL Query Statement and return
the results set (see 6.7).

OpenCursorAtStart Execute an SQL Query Statement and return
the results set with the cursor positioned at the
first row, if any (see 6.7).

Prepare Prepare an SQL Statement using positional
parameters (see 6.4 and 6.6)

PrepareWithNamedParameters Prepare an SQL Statement using the named
parameters syntax (see 6.4 and 6.6)

GetEventHandler Returns an Event Handler interface for handling
events on this database (see 11.1)

CreateBlob Returns an interface to an empty Blob (see 7.4).

OpenBlob Returns an interface to an existing blob (See
7.3).

CreateArray Returns an interface to an empty Array (see 8.4)

CreateArrayMetaData Creates an array metadata structure from the
provided information. (see 8.1)

OpenArray Returns an interface to an existing array (see
8.3).

GetSQLDialect Returns the connection's default SQL Dialect

GetBlobMetaData Returns the metadata for a Blob Column (See
7.1).

GetArrayMetaData Returns the metadata for an Array Column (see
8.1).

27

Firebird Pascal API (fbIntf) Guide

Method Use

GetDBInformation Get Database Information (see 4.8).

HasActivity Returns true if the database connection has
been used since the last call to the method (see
4.9).

28

 Working with Transactions

5
Working with Transactions

Firebird is a transaction orientated database with all SQL activity taking place within the context of
a transaction. Transactions can be isolated from each other and used to determine when changes
are committed (i.e made available to concurrent connections). It is also possible to rollback a
transaction (i.e. to discard all changes made under the transaction).

A transaction can be started on a single transaction or, simultaneously on multiple databases in to
co-ordinate updates across more than one database.

The ITransaction interface provides access to a Firebird transaction.

5.1 The Transaction Parameter Block (TPB)

The Transaction Parameter Block is used to pass various parameters to a StartTransaction
method. These include transaction isolation requirements, action on record locks and access
types.

Creating a TPB is simple enough: the IFirebirdAPI.AllocateTPB method is used to allocate an
interface to an empty TPB (ITPB) and this interface's Add method is used to add parameters to the
TPB.

ITPB = interface
 function getCount: integer;
 function Add(ParamType: byte): ITPBItem;
 function getItems(index: integer): ITPBItem;
 function Find(ParamType: byte): ITPBItem;
 property Count: integer read getCount;
 property Items[index: integer]: ITPBItem read getItems; default;
 end;

This interface follows the pattern established for the DPB (see), with the Add method used to add
a new item, a Find method to locate an existing item and the means provided to enumerate a TPB.

29

Firebird Pascal API (fbIntf) Guide

The ITPBItem interface is defined as:

ITPBItem = interface(IParameterBlockItem) end;

The common transaction parameters do not have any values associated with the, and a typical
example of allocating and populating a TPB is:

var MyTPB: ITPB;
begin
 MyTPB := IFirebird.AllocateTPB;
 MyTPB.Add(isc_tpb_write);
 MyTPB.Add(isc_tpb_nowait);
 MyTPB.Add(isc_tpb_concurrency);

Note that because few TPB parameters take values, the StartTransaction method discussed below has a
variation that only requires a set of TPB constants rather than an ITPB. The TPB is then built automatically
from the set of constants.

Common TPB constants are:

Constant Interpretation

isc_tpb_read Read Only Transaction

isc_tpb_write Read/Write Transaction

isc_tpb_consistency Table-locking transaction model

isc_tpb_concurrency High throughput, high concurrency transaction with acceptable
consistency; use of this parameter takes full advantage of the
Firebird multi-generational transaction model [Default]

isc_tpb_wait Lock resolution specifies that the transaction is to wait until locked
resources are released before retrying an operation [Default]

isc_tpb_nowait Lock resolution specifies that the transaction is not to wait for locks to
be released, but instead, a lock conflict error should be returned
immediately

isc_tpb_read_committed High throughput, high concurrency transaction that can read changes
committed by other concurrent transactions. Use of this parameter
takes full advantage of the Firebird multi-generational transaction
model.

 isc_tpb_lock_read Locks the table given by the parameter value (string: name of table)
for write but permits read by other transactions.

isc_tpb_lock_write Locks the table given by the parameter value (string: name of table)
for write but permits read by read committed and concurrency
transations

30

 Working with Transactions

For additional constants and a more detailed interpretation of the above, the reader should refer to
the InterBase 6.0 API Guide.

5.2 Starting a Transaction

The IAttachment.StartTransaction method is used to start a transaction on a single database. It
returns a reference to the ITransaction interface for the newly started transaction. Two variants of
this method are available:

function StartTransaction(TPB: array of byte;
 DefaultCompletion: TTransactionCompletion=taCommit): ITransaction; overload;

function StartTransaction(TPB: ITPB;
 DefaultCompletion: TTransactionCompletion=taCommit): ITransaction; overload;

The first variant may be used when none of the required transaction parameters takes a value. In
this case, the TPB is expressed as an array of symbolic constants. The second variant requires
that a TPB is built by the caller and provided as a method parameter.

In both cases, the default transaction completion (TARollback, TACommit) may be provided
(default is taCommit). This is interpreted such that if the interface goes out of scope (i.e. is
automatically freed) before an explicit commit or rollback, then the transaction is completed using
the specific default completion.

For example:

MyTransaction := MyAttachment.StartTransaction([isc_tpb_write,
 isc_tpb_nowait,isc_tpb_concurrency],taCommit);

Note: Under Delphi, interfaces are disposed of when the containing block is exited while under FPC, an
interface is disposed of as soon as it becomes inaccessible. For example, when the variable referencing the
interface is set to “nil”. This difference can be significant if your program relies on default transaction
commit/rollback as this may occur at different points in the execution sequence depending on whether you
are using FPC or Delphi.

5.3 Starting a Transaction on Multiple Databases

The IFirebirdAPI.StartTranscation method is used to start a transaction on multiple databases. This
also has two variants:

function StartTransaction(Attachments: array of IAttachment;
 TPB: array of byte;
 DefaultCompletion: TTransactionCompletion=taCommit):
 ITransaction; overload;

function StartTransaction(Attachments: array of IAttachment;
 TPB: ITPB; DefaultCompletion: TTransactionCompletion=taCommit):
 ITransaction; overload;

The difference between these variants and those for a single database are that, for a single
database, the database is implicit in the IAttachment, while for the multiple database case, the
databases have to be provided as an array.

Note that if the array contains only a single attachment, this is treated identically to the single database
attachment variant.

31

Firebird Pascal API (fbIntf) Guide

5.4 Committing a Transaction

A transaction is committed using the ITransaction.Commit or ITransaction.CommitRetaining
methods:

procedure Commit(Force: boolean=false);
procedure CommitRetaining;

In the first case, the transaction ceases to be active when the call completes while, in the second
case, the transaction remains active and further actions may take place in the context of the same
transaction.

If the “Force” parameter is true then the errors are silently ignored.

Prior to a transaction being committed, all active Statements using the transaction are closed.

5.5 Two Phase Commit

The two phase commit procedure is used when a transaction has performed updates across
multiple databases. It is used to ensure that if a problem occurs during the commit process an
administrator can nevertheless perform a deterministic error recovery process ensuring that the
transaction is committed on all databases.

The ITransaction.PrepareForCommit method is used to initiate the two phase commit process.
Once this returns, all databases are guaranteed to be in the same state and the commit method
may now be called to commit the transaction across all databases. For example:

MyTransaction.PrepareForCommit;
MyTransaction.Commit;

5.6 Transaction Rollback

A transaction is rolled back using the ITransaction.Rollback or ITransaction.RollbackRetaining
methods:

procedure Rollback(Force: boolean=false);
procedure RollbackRetaining;

The semantics are the same as for the commit variants except that the database state is rolled
back to the point at which the transaction was started or the last commitRetaining.

ior to a transaction being rolled back, all active Statements using the transaction are closed.

5.7 Restarting a Transaction

After a transaction has been committed or rolled back, it is possible to restart the transaction using
the ITransaction.Start method:

procedure Start(DefaultCompletion: TTransactionCompletion=taCommit);

This restarts the transaction with the same TPB.

Note that the default completion may be changed at this point.

32

 Working with Transactions

5.8 Transaction Activity Monitor

A simple means of polling for transaction API activity is provided by the ITransaction.HasActivity
method. This returns true if any activity has taken place using this transaction since the last time
the method was called, and false otherwise. Activity includes any SQL statement operating in the
transaction context.

This may be used to automatically complete idle transactions after some period has elapsed.

5.9 Reference

ITransaction = interface
 function getTPB: ITPB;
 procedure Start(DefaultCompletion: TTransactionCompletion=taCommit);
 function GetInTransaction: boolean;
 procedure PrepareForCommit; {Two phase commit - stage 1}
 procedure Commit(Force: boolean=false);
 procedure CommitRetaining;
 function HasActivity: boolean;
 procedure Rollback(Force: boolean=false);
 procedure RollbackRetaining;
 function GetAttachmentCount: integer;
 function GetAttachment(index: integer): IAttachment;
 property InTransaction: boolean read GetInTransaction;
 end;

Method Use

getTPB Returns a reference to the TPB used to start the
transaction.

Start Restart a transaction (see 5.7)

GetInTransaction Returns true if the transaction is active

PrepareForCommit Start of two phase commit process for multiple
databases (see 5.5)

Commit Commit and terminate the transaction (see 5.5)

CommitRetaining Commit and leave the transaction active (see
5.5).

HasActivity Returns true if transaction acitivity has taken
place since the last call to the method (see 5.8)

Rollback Rollback and terminate the transaction (see
5.6).

RollbackRetaining Rollback and leave the transaction active (see
5.6).

33

Firebird Pascal API (fbIntf) Guide

Method Use

GetAttachmentCount Returns the number of database attachments
over which the transaction is active.

GetAttachment Return a selected database attachment.

34

 Working with Dynamic SQL

6
Working with Dynamic SQL

Firebird is an SQL Database. Data held within the database is access and modified using SQL
Data Manipulation Language (DML) statements and the database metadata (e.g. table definitions)
managed using the SQL Data Definition Language (DDL).

The Firebird Client API uses the Dynamic SQL variant of the Firebird SQL implementation for all
database queries and data modifications. Dynamic SQL is used for statements that are built and
executed dynamically at run time rather than being compiled into a program.

This section describes how SQL Statements are used with the Firebird Pascal API.

6.1 Dynamic SQL and the Firebird Pascal API

The SQL Statement syntax is described fully in the Firebird Language Guide and this document
should be consulted for all SQL reference. However, this API also provides an extended syntax for
statement parameter definition.

It is also worth noting that there are two SQL dialects supported. Dialect 1 is a more limited dialect
for legacy applications, while dialect 3 is the more up-to-date one recommended for all new
applications. One of the more notable differences between the dialects is that dialect 3 supports
SQL Identifiers that are reserved words or case sensitive by placing them within double quotes.

6.1.1 Named Parameters

Firebird Dynamic SQL only supports positional parameters in SQL statements. For example:

Select * from MyTable Where MyKeyName like ?

Where the question mark is a placeholder for a positional parameter. The parameters are
accessed by a zero based index number in the order they occur in the statement.

35

Firebird Pascal API (fbIntf) Guide

The Firebird Pascal API extends this syntax to allow for named parameters using the same
conventions used for the Firebird Procedure and Trigger Language, where named parameters are
case insensitive SQL identifiers preceded by a colon. For example:

Select * from MyTable Where MyKeyName like :PARAM

In the above, “PARAM” is a named parameter.

An SQL Statement containing named parameters is parsed by the Firebird Pascal API before the
statement is passed to the Firebird API and the named parameters replaced by placeholders
(question marks), A lookup table is retained to provide a mapping between parameter names and
their position. It is then possible for the API user to specify parameter values by name, with the
Firebird Pascal API looking up the name and setting the corresponding positional parameter with
the required value.

As a further extension, parameter names are not required to be unique. When a non-unique
parameter name is set to a given value, all positional parameters linked to the same name are set
to the required value. The API user can thus set more than one parameter value in a single
operation.

Duplicate Parameter Names can be very useful. For example, an SQL Select Statement may be
given as

Select Col1, Col2
From Table_A
Where Col3 = :arg1
UNION
Select Col4, Col5
From Table_B
Where Col6 = :arg1

In this case, "arg1" need only be set once. e.g.

SQLParams.ByName('arg1').AsInteger := 3;

Both cases will be set to 3.

6.1.2 Column Names

An SQL Statement that results in output data (e.g. a select statement) provides a results set that
allows the data items (fields) in each output to be accessed by statement position or by (case
insensitive) name. For example:

Select EMP_NO,FULL_NAME from EMPLOYEES;

In this case, the fields in the results set can be accessed positionally, with EMP_NO at position 0
and FULL_NAME at position 1, or by name using EMP_NO and FULL_NAME as the field names.

The fields in a results set should always have field names identical to the source Firebird table
column name, or, if provided, a column alias name given in the SQL Statement. However, there are
exceptions.

Firebird identifiers (e.g. column names) are typically case insensitive and are converted to upper
case when processed and reported. This translates into the Firebird Pascal API always reporting
upper case column names and matching column names to field names using a case insensitive
match.

36

 Working with Dynamic SQL

However, in SQL Dialect 3, Firebird introduced the ability to enclose identifiers in double quotes.
This is necessary if, for example, you want a column name that is the same as an SQL Reserved
word. It also allows you to have case sensitive column names, or column names containing
spaces.

For Example:

Create Table MY_TABLE (
 "KeyField" Integer,
 "GRANT" VarChar(32),
 "My Column" Float
);

The Firebird Pascal API could readily handle case sensitive column names and isn't bothered by
SQL reserved words. However, looking forward to using the Firebird Pascal API from IBX, there is
the problem that the Lazarus TDataSet model includes the ability to automatically generate TField
properties and which are then added to the Form's list of properties. The name of the generated
property is formed by concatenating the IBX object name with the column alias name.

Pascal identifiers are also case insensitive and this could cause problems if two column names
differ only in the case of their letters: the generated property names will cause a compilation error.
Neither can Pascal identifiers contain spaces.

The Firebird Pascal API handles this by forcing all column names to upper case, regardless of how
they are defined in SQL. It also replaces spaces by underscores. The identifiers given to
Generated column properties are then both valid Pascal and unambiguous. However, it is still
necessary to handle cases where two column names differ only in their case - forcing the column
names to upper case will only result in a name clash.

It is also the case that column alias names aren't always unique anyway. For example, in the SQL:

select sum(col1), sum(col2) from MyTable;

Firebird will generate the alias name "SUM" for both cases. It will also allow you to specify the
same alias name multiple times in the same statement.

The Firebird Pascal API handles this by checking for non-unique alias names when the SQL is
prepared and disambiguating the column names by adding a numerical suffix (starting from one) to
each non-unique column name it finds after the first one. The same approach is used when non-
unique column names result after forcing the column name to upper case.

For example, with a table defined as

Create Table MY_TABLE (
 TableKey Integer not null,
 "My Field" VarChar(32),
 "MY Field" VarChar(32),
 Primary Key(TableKey)
);

 The column names used by the Firebird Pascal API will be

TABLEKEY
MY_FIELD
MY_FIELD1

respectively.

37

Firebird Pascal API (fbIntf) Guide

IResults.ByName('tableKey').AsInteger
IResults.ByName('MY_FIELD').AsString
IResults.ByName('my_field1').AsString

Are then all valid examples for accessing the column values.

6.2 SQL Statement with no input or output

An SQL Statement with no input or output (e.g. a DDL statement) may be executed quickly and
efficiently using the IAttachment.ExecImmediate method. Several variants of this method are
available:

procedure ExecImmediate(transaction: ITransaction; sql: AnsiString;
 SQLDialect: integer); overload;
procedure ExecImmediate(TPB: array of byte; sql: AnsiString;
 SQLDialect: integer); overload;
procedure ExecImmediate(transaction: ITransaction; sql: AnsiString); overload;
procedure ExecImmediate(TPB: array of byte; sql: AnsiString); overload;

In each case an SQL Statement is provided as a plain text string. The variations allow for the
transaction to be provided explicitly or defined as TPB (no value) parameters, and to enable the
SQL Dialect to be explicitly provided. By default, the default connection SQL Dialect is used.

If the transaction is defined by TPB parameters then a transaction is constructed for the statement,
the statement is executed and the transaction committed. When the transaction is given explicitly, it
is the responsibility of the caller to commit the transaction.

For example:

const
 sqlCreateTable =
 'Create Table TestData ('+
 'RowID Integer not null,'+
 'Title VarChar(32) Character Set UTF8,'+
 'BlobData Blob sub_type 0, '+
 'Primary Key(RowID)'+
 ')';

begin
 Attachment.ExecImmediate([isc_tpb_write,
 isc_tpb_wait,
 isc_tpb_consistency],sqlCreateTable);
…

6.3 Metadata

Metadata provides information about data and a database's metadata includes the definition of
data structures such as tables. When executing a DML SQL Statement with parameters, it is also
useful to know the metadata that describes the statements input and/or output. In this case, the
metadata tells the user information about each input parameter or column in the result set that
includes:

• the SQL Type
• any names or other identification information
• refinements of the SQL Type, such as the character set used for strings, or the number

decimal places in fixed point data.
• Whether the column or parameter can be set to null.

38

 Working with Dynamic SQL

The IAttachment.Prepare method is the first step in executing an SQL Statement and, on
successful completion, also provides the statement's metadata, via the IStatement interface:

function Prepare(transaction: ITransaction; sql: AnsiString;
 aSQLDialect: integer): IStatement; overload;
function Prepare(transaction: ITransaction; sql: AnsiString): IStatement; overload;
function PrepareWithNamedParameters(transaction: ITransaction; sql: AnsiString;
 aSQLDialect: integer; GenerateParamNames: boolean=false;
): IStatement; overload;
function PrepareWithNamedParameters(transaction: ITransaction; sql: AnsiString;
 GenerateParamNames: boolean=false;
): IStatement; overload;

As shown above, four variants of the prepare method are available; all return an IStatement
interface. The first two are used for statements that contain either no parameters or positional
parameters only. The latter two are intended for statements that used named parameters.
However, they may also be used for any SQL Statement – the prepare variant simply avoids the
processing overhead of parsing the SQL in the client API.

The other variation is whether or not the SQL Dialect is given explicitly or defaults to the default
connection SQL Dialect.

When statements are prepared with named parameters it is also possible to set
GenerateParamNames to true. This is an IBX hangover and, in this case, if a positional
placeholder (i.e. a ?) is found then it is linked to a named parameter in the format 'IBXParamn'
where n is position number of the parameter.

6.3.1 Input Parameter Metadata

After the completion of the prepare step, the IStatement interface can be queried to determine the
input parameter metadata, if any, using the IStatement.SQLParams property. This property returns
an ISQLParams interface:

 ISQLParams = interface
 function getCount: integer;
 function getSQLParam(index: integer): ISQLParam;
 function ByName(Idx: AnsiString): ISQLParam ;
 function GetModified: Boolean;
 property Modified: Boolean read GetModified;
 property Params[index: integer]: ISQLParam read getSQLParam; default;
 property Count: integer read getCount;
 end;

The ISQLParams interface identifies how many input parameters were found (the Count property)
and allows access to each one, either by position or by name (named parameter statements only).
If there are no input parameters the Count property returns zero.

Each parameter is returned as an ISQLParam interface:

ISQLParam = interface
 function GetIndex: integer;
 function GetSQLType: cardinal;
 function GetSQLTypeName: AnsiString;
 function getSubtype: integer;
 function getName: AnsiString;
 function getScale: integer;
 function getCharSetID: cardinal;
 function getCodePage: TSystemCodePage;

39

Firebird Pascal API (fbIntf) Guide

 function getIsNullable: boolean;
 function GetSize: cardinal;
 function GetAsBoolean: boolean;
 function GetAsCurrency: Currency;
 function GetAsInt64: Int64;
 function GetAsDateTime: TDateTime;
 function GetAsDouble: Double;
 function GetAsFloat: Float;
 function GetAsLong: Long;
 function GetAsPointer: Pointer;
 function GetAsQuad: TISC_QUAD;
 function GetAsShort: short;
 function GetAsString: AnsiString;
 function GetIsNull: boolean;
 function GetAsVariant: Variant;
 function GetAsBlob: IBlob;
 function GetAsArray: IArray;
 procedure Clear;
 function GetModified: boolean;
 procedure SetAsBoolean(AValue: boolean);
 procedure SetAsCurrency(aValue: Currency);
 procedure SetAsInt64(aValue: Int64);
 procedure SetAsDate(aValue: TDateTime);
 procedure SetAsLong(aValue: Long);
 procedure SetAsTime(aValue: TDateTime);
 procedure SetAsDateTime(aValue: TDateTime);
 procedure SetAsDouble(aValue: Double);
 procedure SetAsFloat(aValue: Float);
 procedure SetAsPointer(aValue: Pointer);
 procedure SetAsShort(aValue: Short);
 procedure SetAsString(aValue: AnsiString);
 procedure SetAsVariant(aValue: Variant);
 procedure SetIsNull(aValue: Boolean);
 procedure SetAsBlob(aValue: IBlob);
 procedure SetAsArray(anArray: IArray);
 procedure SetAsQuad(aValue: TISC_QUAD);
 procedure SetCharSetID(aValue: cardinal);
 property AsDate: TDateTime read GetAsDateTime write SetAsDate;
 property AsBoolean:boolean read GetAsBoolean write SetAsBoolean;
 property AsTime: TDateTime read GetAsDateTime write SetAsTime;
 property AsDateTime: TDateTime read GetAsDateTime write SetAsDateTime;
 property AsDouble: Double read GetAsDouble write SetAsDouble;
 property AsFloat: Float read GetAsFloat write SetAsFloat;
 property AsCurrency: Currency read GetAsCurrency write SetAsCurrency;
 property AsInt64: Int64 read GetAsInt64 write SetAsInt64;
 property AsInteger: Integer read GetAsLong write SetAsLong;
 property AsLong: Long read GetAsLong write SetAsLong;
 property AsPointer: Pointer read GetAsPointer write SetAsPointer;
 property AsShort: Short read GetAsShort write SetAsShort;
 property AsString: AnsiString read GetAsString write SetAsString;
 property AsVariant: Variant read GetAsVariant write SetAsVariant;
 property AsBlob: IBlob read GetAsBlob write SetAsBlob;
 property AsArray: IArray read GetAsArray write SetAsArray;
 property AsQuad: TISC_QUAD read GetAsQuad write SetAsQuad;
 property Value: Variant read GetAsVariant write SetAsVariant;
 property IsNull: Boolean read GetIsNull write SetIsNull;
 property IsNullable: Boolean read GetIsNullable;
 property Modified: Boolean read getModified;
 property Name: AnsiString read GetName;
 property SQLType: cardinal read GetSQLType;
 end;

The ISQLParam interface is a large interface, as it provides both type information and setters and
getters as well as corresponding properties for each data type supported. It provides both the input
parameter metadata as well as a means of setting each parameter.

40

 Working with Dynamic SQL

The caller may use the SQLType property to determine the actual data type of the parameter. The
Firebird Data Definition Guide should be consulted for information on SQL Types and use of the
scale property for fixed point types. Constants for the available SQL Types are defined in the “IB”
unit.

The use of this interface is discussed below in 6.4, and is typically used to set the values of the
input parameters. For example:

MyStatement := MyAttachment.Prepare(MyTransaction,
 'Select * From MyTable where rowid = ?');
if (MyStatement.SQLParams.Count > 0) and
 (MyStatement.SQLParams[0].SQLType = SQL_INTEGER) then
 MyStatement.SQLParams[0].AsInteger := 1;

In the above example, the number of input parameters is checked to ensure that at least one is
available and the input parameter type is tested to ensure that it is an integer. However, in practice,
this can usually be assumed a priori and this test omitted, given that the programmer has also
specified the SQL Statement.

Note that you can set an input parameter to any data type which can be converted by the Firebird Engine to
the input parameter data type. For example, a date can also be expressed as a date string.

6.3.2 Output Metadata

The output metadata describes the structure of the dataset that an SQL Statement returns after it
is executed. It therefore consists only of information and provides no access to data. After the
successful completion of an IStatement.Prepare statement, the IStatement.Metadata property
gives access to the Output Metadata and returns an IMetadata interface:

IMetaData = interface
 function getCount: integer;
 function getColumnMetaData(index: integer): IColumnMetaData;
 function GetUniqueRelationName: AnsiString;
 {Non empty if all columns come from the same table}
 function ByName(Idx: AnsiString): IColumnMetaData;
 property ColMetaData[index: integer]: IColumnMetaData
 read getColumnMetaData; default;
 property Count: integer read getCount;
end;

This is very similar in structure to the ISQLParams interface and allows the number of output
columns to be determined, and to access each such column either by position or name. In this
case, a name is always available and is the unique column name (or alias if provided) given in the
SQL Statement. For each column, the interface returns an IColumnMetaData interface:

IColumnMetaData = interface
 function GetIndex: integer;
 function GetSQLType: cardinal;
 function GetSQLTypeName: AnsiString;
 function getSubtype: integer;
 function getRelationName: AnsiString;
 function getOwnerName: AnsiString;
 function getSQLName: AnsiString; {Name of the column in original table}
 function getAliasName: AnsiString; {Alias Name of column or Column Name
 if no alias}
 function getName: AnsiString; {Disambiguated uppercase Field Name – see
6.1.2}
 function getScale: integer;
 function getCharSetID: cardinal;

41

Firebird Pascal API (fbIntf) Guide

 function getCodePage: TSystemCodePage;
 function getIsNullable: boolean;
 function GetSize: cardinal;
 function GetArrayMetaData: IArrayMetaData; {Valid only for Array SQL Type}
 function GetBlobMetaData: IBlobMetaData; {Valid only for Blob SQL Type}
 property Name: AnsiString read GetName;
 property Size: cardinal read GetSize;
 property SQLType: cardinal read GetSQLType;
 property Scale: integer read getScale;
 property SQLSubtype: integer read getSubtype;
 property IsNullable: Boolean read GetIsNullable;
end;

The caller may use the SQLType property to determine the actual data type of each column. The
Firebird Data Definition Guide should be consulted for information on SQL Types and use of the
scale property for fixed point types. The handling of Blob types is discussed in chapter 7, and the
handling of array types is discussed in chapter 8. Otherwise:

• The SQLTypeName is the textual representation of the SQL Type
• The subtype applies only to Blobs and distinguishes different Blob types.
• The Relation Name is the original table name from which the column is sourced.
• The Owner Name is the login user name of the table owner.
• The SQL Name is the column name used in the SQL Statement (may not be unique).
• The Alias Name is the alias given in the SQL Statement (must be unique)
• The Name property is the unique name of the column used in “ByName” lookups.
• The Character Set ID applies to text data and is the Firebird Character set id for the text.
• The Code Page is the system code page that corresponds to the Firebird Character Set.
• The Size property depends on the data type. For variable length strings, it is the maximum

string length.

6.4 SQL Statements with input parameters only

Examples of SQL Statements that have input parameters but no output include Insert, Update and
Delete Statements. In the general case. These statement must be prepared, as discussed above
and then executed using the IStatement.Execute method (although a short cut does exist – see
below):

function Execute(aTransaction: ITransaction=nil): IResults;

If the aTransaction parameter is omitted or set to nil, the same transaction that was used to
prepare the statement is used to execute it. However, it is possible to use an (e.g. long lived)
transaction to prepare a statement and then use a different (e.g. short lived) transaction to execute
the statement, as long as the first transaction is still active. This approach allows a prepared
statement to be executed multiple times (possibly with different parameters values), saving the
data each time by committing the transaction whilst avoiding having to prepare the statement each
time. That is because once a transaction is committed, a statement prepared using that transaction
is no longer valid.

Note: an alternative approach using CommitRetaining achieves the same effect and avoids having to use
separate transactions.

For example:

42

 Working with Dynamic SQL

MyStatement := MyAttachment.Prepare(MyTransaction,
 'Update MyTable Set MyText = ? where rowid = ?');
MyStatement.SQLParams[0].AsString := 'Some new text';
MyStatement.SQLParams[1].AsInteger := 1;
MyStatement.Execute;
MyTransaction.CommitRetaining;

The above example, prepares an update statement with positional parameters, then sets the value
of those parameters and executes the statement. The update is saved to the database with
CommitRetaining. The parameters can now be set to different values and the statement executed
again, without having to re-prepare the statement.

Note that the IResults interface is returned by the execute method. However, this is ignored in the above
example as there is no useful information returned. However, there are cases when useful information is
returned and this is discussed in 6.5 below.

6.4.1 The IAttachment.ExecuteSQL method

The IAttachment ExecuteSQL method provides a short cut for the above which is often more
appropriate than having separate steps to prepare, assign parameter and execute a statement.
There are a set of ExecuteSQL methods available:

 function ExecuteSQL(TPB: array of byte; sql: AnsiString; SQLDialect: integer;
 params: array of const): IResults; overload;
 function ExecuteSQL(transaction: ITransaction; sql: AnsiString;
 SQLDialect: integer; params: array of const): IResults; overload;
 function ExecuteSQL(TPB: array of byte; sql: AnsiString;
 params: array of const): IResults; overload;
 function ExecuteSQL(transaction: ITransaction; sql: AnsiString;
 params: array of const): IResults; overload;

These vary by whether or not the connection default SQL Dialect is used, or whether an existing
transaction is used or whether the statement is executed and commited in a single step with the
transaction parameters provided as a list TPB constants.

An Execute SQL statement may have positional parameters and if so, the parameter values are
provided as an array of const. For example:

Attachment.ExecuteSQL(Transaction, 'Execute Procedure DELETE_EMPLOYEE ?', [8]);

The ExecuteSQL statement can return a single row of results in the IResults interface. See below.

6.5 SQL Statements with Output

An SQL Statement with output is defined here as a non-select SQL Statement that returns a single
row of data values. An example of such a statement is “Insert ….Returning”. In this case, the
IResults interface returned by the IStatement.Execute or IAttachment.ExecuteSQL methods
provides the returned data.

43

Firebird Pascal API (fbIntf) Guide

IResults = interface
 function getCount: integer;
 function GetTransaction: ITransaction;
 function ByName(Idx: AnsiString): ISQLData;
 function getSQLData(index: integer): ISQLData;
 procedure GetData(index: integer; var IsNull:boolean;
 var len: short; var data: PByte);
 procedure SetRetainInterfaces(aValue: boolean); {see 6.8}
 property Data[index: integer]: ISQLData read getSQLData; default;
 property Count: integer read getCount;
end;

This interface may be used to determine how many data items are returned (Count property) and
allows each data item to be accessed either by position or by name, where the data item name is
the output column name. It can also be used to get direct access to the raw data for each column
by position (using the GetData method). This returns a null indicator, the length of the data and a
pointer to the raw data returned from the database. When the data type is SQL_TEXT or
SQL_VARYING, the pointer is always to the first character in the string (of length len bytes).

Each data item may also be accessed as a properly formatted type via an ISQLData interface:

ISQLData = interface(IColumnMetaData)
 function GetAsBoolean: boolean;
 function GetAsCurrency: Currency;
 function GetAsInt64: Int64;
 function GetAsDateTime: TDateTime;
 function GetAsDouble: Double;
 function GetAsFloat: Float;
 function GetAsLong: Long;
 function GetAsPointer: Pointer;
 function GetAsQuad: TISC_QUAD;
 function GetAsShort: short;
 function GetAsString: AnsiString;
 function GetIsNull: Boolean;
 function GetAsVariant: Variant;
 function GetAsBlob: IBlob; overload;
 function GetAsBlob(BPB: IBPB): IBlob; overload;
 function GetAsArray: IArray;
 property AsDate: TDateTime read GetAsDateTime;
 property AsBoolean:boolean read GetAsBoolean;
 property AsTime: TDateTime read GetAsDateTime;
 property AsDateTime: TDateTime read GetAsDateTime ;
 property AsDouble: Double read GetAsDouble;
 property AsFloat: Float read GetAsFloat;
 property AsCurrency: Currency read GetAsCurrency;
 property AsInt64: Int64 read GetAsInt64 ;
 property AsInteger: Integer read GetAsLong;
 property AsLong: Long read GetAsLong;
 property AsPointer: Pointer read GetAsPointer;
 property AsQuad: TISC_QUAD read GetAsQuad;
 property AsShort: short read GetAsShort;
 property AsString: AnsiString read GetAsString;
 property AsVariant: Variant read GetAsVariant ;
 property AsBlob: IBlob read GetAsBlob;
 property AsArray: IArray read GetAsArray;
 property IsNull: Boolean read GetIsNull;
 property Value: Variant read GetAsVariant;
end;

ISQLData is primarily a set of getters for each data type. Type conversion is performed where
possible. For example, all scaler types and dates can be returned as strings. AsDouble and
AsCurrency automatically adjust fixed point types to reflect the “scale” specified in the metadata.

44

 Working with Dynamic SQL

Note that the ISQLData interface inherits from the IColumnMetaData interface. It thus also provides direct
access to the data item's metadata. An ISQLData interface is simply an IColumnMetaData interface plus
getter methods for each data type supported and corresponding properties.

For example:

var theResults: IResults;

begin
 MyStatement := MyAttachment.PrepareWithNamedParameters(MyTransaction,
 'Insert into MyTable (MyText, RowID) Values (:INITIALTEXT,:ROWID) '+
 'Returning RowID';
 MyStatement.SQLParams.ByName('INITIALTEXT').AsString := 'Some text';
 MyStatement.SQLParams.ByName('ROWID').AsInteger := 1;
 theResults := MyStatement.Execute;
 writeln('Insert completed with Rowid = ',theResults[0].AsInteger);

6.6 Query Statements

A query statement is an SQL Select Statement. It may or may not have input parameters and can
return zero, one or more rows of data. A query statement's metadata describes each column in the
results set.

A query statement is prepared and has its input parameters, if any, set in the same way as any
other SQL Statement. The difference comes when it is executed.

Note: A query statement can be distinguished from other SQL Statements, by checking the
IStatement.SQLStatementType property. A query statement has an SQL Statement Type of SQLSelect.

A query statement is executed using the IStatement.OpenCursor the method:

function OpenCursor(aTransaction: ITransaction=nil): IResultSet;

This is very similar to the execute statement, except that it returns an IResultSet interface instead
of an IResults interface:

IResultSet = interface(IResults)
 function FetchNext: boolean;
 function GetCursorName: AnsiString;
 function IsEof: boolean;
 procedure Close;
end;

Note that this interface inherits from IResults and hence allows access to each column's data item in the
same way as an IResults interface. It extends IResults to provide a means of scrolling through the result set.

Note: with Firebird 3, the cursor name is always empty.

When the results set is first returned, it is not focused on any row of the dataset and any attempt to
access any inherited IResults methods or properties will result in an error. The FetchNext method
must first be called to advance the cursor to the first row. This will return false if there are no more
rows in the dataset.

Note that the IsEof method always returns false until FetchNext is called for the first time, even when the
dataset is empty.

The interface design is intended to facilitate the following processing:, using a while loop

45

Firebird Pascal API (fbIntf) Guide

var theResults: IResultSet;

begin
 MyStatement := MyAttachment.Prepare(MyTransaction,
 'Select * From MyTable Where MyText like ?');
 MyStatement.SQLParams[0].AsString := '%text%';
 theResults := MyStatement.OpenCursor;
 while theResults.FetchNext do
 writeln('Row ',theResults.ByName('ROWID').AsInteger,
 ' has text ',theResults[1].AsString);
 theResults.Close;

Note that the IResultSet should be closed after use by calling the Close method. However, this is not
essential as the result set is automatically closed when the interface goes out of scope.

If the empty dataset case needs to be handled separately, then the following may be used:

var theResults: IResultSet;

begin
 MyStatement := MyAttachment.Prepare(MyTransaction,
 'Select * From MyTable Where MyText like ?');
 MyStatement.SQLParams[0].AsString := '%text%';
 theResults := MyStatement.OpenCursor;
 if not theResults.FetchNext then
 writeln('The Dataset was empty!')
 else
 repeat
 writeln('Row ',theResults.ByName('ROWID').AsInteger,
 ' has text ',theResults[1].AsString);
 until not theResults.FetchNext;
 theResults.Close;

6.7 Simplified Queries

While some queries do return large and complex datasets, others return much simpler information
sets and sometimes only a single data item. For this latter case, fbintf offers convenience functions
that avoid the user having to proceed through all the above steps in order to, for example, count all
the rows in a table.

 function OpenCursor(transaction: ITransaction; sql: AnsiString;
 aSQLDialect: integer): IResultSet; overload;
 function OpenCursor(transaction: ITransaction; sql: AnsiString;
 aSQLDialect: integer;
 params: array of const): IResultSet; overload;
 function OpenCursor(transaction: ITransaction;
 sql: AnsiString): IResultSet; overload;
 function OpenCursor(transaction: ITransaction; sql: AnsiString;
 params: array of const): IResultSet; overload;
 function OpenCursorAtStart(transaction: ITransaction; sql: AnsiString;
 aSQLDialect: integer): IResultSet; overload;
 function OpenCursorAtStart(transaction: ITransaction; sql: AnsiString;
 aSQLDialect: integer;
 params: array of const): IResultSet; overload;
 function OpenCursorAtStart(transaction: ITransaction;
 sql: AnsiString): IResultSet; overload;
 function OpenCursorAtStart(transaction: ITransaction; sql: AnsiString;
 params: array of const): IResultSet; overload;
 function OpenCursorAtStart(sql: AnsiString): IResultSet; overload;
 function OpenCursorAtStart(sql: AnsiString;
 params: array of const): IResultSet; overload;

46

 Working with Dynamic SQL

The above set of methods are all provided by the IAttachment interface and are intended to be
used in cases where there are no input parameters and the result set is relatively simple. There are
two main variants:

• The OpenCursor methods prepare and execute the SQL statement with the provided
transaction and return the result set.

• The OpenCursorAtStart group do the same, but additionally call fetchNext on the results
set before returning.

These also vary by whether the default SQL Dialect is used or if the transaction is given as a
parameter or a list of TPB attributes, or simply a default transaction. When a default transaction is
used, the method creates its own transaction with parameters: isc_tpb_read, isc_tpb_wait and
isc_tpb_concurrency and returns the result. For example, to get a count of all the rows in a table,
the following expression can be used:

int rowCount;
begin
 rowCount := MyAttachment.OpenCursorAtStart(
 'Select count(*) from MyTable')[0].AsInteger;

This works because on return, the result set has been advanced to the first and only row, and the
first and only data item in that row is an integer value i.e. the row count.

Positional parameters in queries are supported. If present, then an array of const “params” must be
provided with one parameter value for each positional parameter and in positional order. The
parameter values must be type compatible with each parameter .e.g.

var employees: integer;
begin
 employees := Attachment.OpenCursorAtStart(
 'Select count(*) As Counter from EMPLOYEE Where EMP_NO < ?',[8])[0].AsInteger

6.8 Performance Optimisation

Behind each interface is an object which has to be created and which will be automatically
destroyed when the interface reference goes out of scope. While this generally works well, this can
result in a significant overhead when processing a large dataset.

Both the IResults (and IResultsSet) and the IStatement interface have a SetRetainInterfaces
method that allows an internal flag to be set indicating whether or not subordinate interfaces are to
be retained rather than automatically destroyed when they go out of scope:

• If the IResults.SetRetainInterfaces flag is set to true then all subsequent ISQLData
interfaces returned by the interface are retained. This avoids the overhead of constantly
creating and discarding the interfaces when processing a large dataset.

• If the IStatement.SetRetainInterfaces flag is set to true then all IColumnMetaData and
ISQLParam interfaces returned by the interface are retained. This avoids the overhead of
constantly creating and discarding the interfaces if they are regularly referenced when
processing a large dataset.

Setting either flag to false releases all held interfaces (that are already out of scope) and the
interface no longer retains the subordinate interfaces.

47

Firebird Pascal API (fbIntf) Guide

Note: If this optimisation is used then it is important that the SetRetainInterfaces flag is explicitly set to false
when the interface is no longer required. Otherwise the retained interfaces will never be released, even when
the parent interface goes out of scope and a memory leak will result.

6.9 Performance Statistics

The IStatement interface also allows access to performance statistics. These are collected each
time a statement is executed or a cursor opened.

Statistics collection is disabled by default. To enable statistics collection for a statement, call the
EnableStatistics procedure setting the parameter to true.

Once enabled, the performance statistics for the mostly recently executed statement or cursor
opened (by this IStatement interface) can be obtained by a call to GetPerfStatistics. For example,
to report statistics in an ISQL fashion:

var stats: TPerfCounters;
begin
 …
 if Statement.GetPerfStatistics(stats) then
 begin
 writeln('Current memory = ', stats[psCurrentMemory]);
 writeln('Delta memory = ', stats[psDeltaMemory]);
 writeln('Max memory = ', stats[psMaxMemory]);
 writeln('Elapsed time= ', FormatFloat('#0.000',stats[psRealTime]/1000),' sec');
 writeln('Cpu = ', FormatFloat('#0.000',stats[psUserTime]/1000),' sec');
 writeln('Buffers = ', stats[psBuffers]);
 writeln('Reads = ', stats[psReads]);
 writeln('Writes = ', stats[psWrites]);
 writeln('Fetches = ', stats[psFetches]);
 end;
end;

TPerfCounters is defined as an array:

TPerfStats = (psCurrentMemory, psMaxMemory,
 psRealTime, psUserTime, psBuffers,
 psReads, psWrites, psFetches,psDeltaMemory);

 TPerfCounters = array[TPerfStats] of Int64;

Where the counter indexes reference the following counters:

psCurrentMemory Current server memory used in bytes

psMaxMemory Max server memory used in bytes

psRealTime Local Query Execution elapsed time in milliseconds

psUserTime Local CPU time for execution in milliseconds

psBuffers Buffers in use after query execution

psReads Number of database reads during execution.

48

 Working with Dynamic SQL

psWrites Number of database writes during execution

psFetches Number of database fetches during execution

psDeltaMemory Different in server memory used before and after query execution.

6.10 Reference

IStatement = interface
 function GetMetaData: IMetaData; {Output Metadata}
 function GetSQLParams: ISQLParams;{Statement Parameters}
 function GetPlan: AnsiString;
 function GetRowsAffected(var SelectCount, InsertCount,
 UpdateCount, DeleteCount: integer): boolean;
 function GetSQLStatementType: TIBSQLStatementTypes;
 function GetSQLText: AnsiString;
 function GetSQLDialect: integer;
 function IsPrepared: boolean;
 procedure Prepare(aTransaction: ITransaction=nil);
 function Execute(aTransaction: ITransaction=nil): IResults;
 function OpenCursor(aTransaction: ITransaction=nil): IResultSet;
 function GetAttachment: IAttachment;
 function GetTransaction: ITransaction;
 procedure SetRetainInterfaces(aValue: boolean);
 procedure EnableStatistics(aValue: boolean);
 function GetPerfStatistics(var stats: TPerfCounters): boolean;
 property MetaData: IMetaData read GetMetaData;
 property SQLParams: ISQLParams read GetSQLParams;
 property SQLStatementType: TIBSQLStatementTypes read GetSQLStatementType;
end;

Method Description

GetMetaData Returns an interface to the query metadata.

GetSQLParams Returns an interface to the query parameters

GetPlan Returns the query plan

GetRowsAffected Returns the number of rows affected by the last query execution,
analysed by query type.

GetSQLStatementType Returns the SQL Statement Type

GetSQLText Returns the SQL Statement as plain text

IsPrepared Returns true if the query is still in its prepared state

Prepare Reprepare a query, optionally with a different transaction.

49

Firebird Pascal API (fbIntf) Guide

Execute Execute a non-select query

OpenCursor Executes a select query and returns the results set

GetAttachment Returns a reference to the connection used by the statement

GetTransaction Returns a reference to the transaction used to prepare the query

SetRetainInterfaces See 6.8

EnableStatistics See 6.9

GetPerfStatistics See 6.9

50

 Working with Blob Data

7
Working with Blob Data

Binary Large Objects (Blobs) are containers for almost unlimited amounts of binary data held within
a Firebird Database. In practice, Blobs are limited by the database architectural limits and available
disk storage but, perhaps the most important point is that their individual size limit is not part of the
metadata.

Blobs can be created and written outside of the handling of SQL Statements. Once created, a Blob
is given a unique, database generated, identifier which can be stored in a database column and
with a different value for each row. This identifier is composed of two four byte non-negative
integers and is given the type name ISC_QUAD.

A Blob is normally accessed by reading a database row, retrieving the ISC_QUAD identifier and
then using this to read the Blob itself. The Blob field is updated by creating a new one and
assigning its ISC_QUAD identifier to the field3 and committing the change to the database. Blobs
do not have to be explicitly deleted as Blobs that are not referenced from any table or active
transaction are automatically removed as part of database garbage collection.

Text mode Blobs can also be read and written to using the ISQLData.AsString and
ISQLParam.AsString properties and without the need to use the IBlob interface. However, there
are issues with the latter case (see 9.5).

7.1 Blob MetaData

7.1.1 Output Metadata

With reference to 6.3.2, if a database column in the output metadata (IColumnMetaData) has an
SQLType of SQL_BLOB then the column is defined as a Blob.

The SQLSubType is valid for Blob columns and identifies the type of data stored in the Blob. A
subtype of “1” is always text, while “0” is undefined data. Other values can have database specific

3The instance of a column value in each row is referred to here as a “field”.

51

Firebird Pascal API (fbIntf) Guide

interpretations. For text Blobs, the IColumnMetaData.getCharSetID method returns the Firebird
Character Set ID for the text data4.

The IColumnMetaData.GetBlobMetaData method may also be used to return additional metadata
for the Blob accessed using the IBlobMetaData interface:

IBlobMetaData = interface
 function GetSubType: integer;
 function GetCharSetID: cardinal;
 function GetCodePage: TSystemCodePage;
 function GetSegmentSize: cardinal;
 function GetRelationName: AnsiString;
 function GetColumnName: AnsiString;
end;

Most of this information is already provided via the IColumnMetaData. Only the segment size is
unique to this interface. This interface is inherited by the IBlob interface (see 7.2).

7.1.2 Input Metadata

The ISQLParam interface (see 6.3.1) will identify when the parameter type is Blob (SQLType =
SQL_BLOB), and gives its sub type and character set id. However, it is not possible at this point to
see the full Blob Metadata.

7.2 The IBlob Interface

A Blob is accessed, read and written, using the IBlob Interface:

IBlob = interface(IBlobMetaData)
 function GetBPB: IBPB;
 procedure Cancel;
 procedure Close;
 function GetBlobID: TISC_QUAD;
 function GetBlobMode: TFBBlobMode;
 function GetBlobSize: Int64;
 procedure GetInfo(var NumSegments: Int64; var MaxSegmentSize,
 TotalSize: Int64; var BlobType: TBlobType);
 function Read(var Buffer; Count: Longint): Longint;
 function Write(const Buffer; Count: Longint): Longint;
 function LoadFromFile(Filename: AnsiString): IBlob;
 function LoadFromStream(S: TStream) : IBlob;
 function SaveToFile(Filename: AnsiString): IBlob;
 function SaveToStream(S: TStream): IBlob;
 function GetAsString: rawbytestring;
 procedure SetAsString(aValue: rawbytestring);
 function SetString(aValue: rawbytestring): IBlob;
 function GetAttachment: IAttachment;
 function GetTransaction: ITransaction;
 property AsString: rawbytestring read GetAsString write SetAsString;
end;

Note that the IBlob interface inherits from IBlobMetaData and hence Blob metadata is also available through
the IBlob interface.

Blobs of all subtypes can be read and written to as strings. For anything other than subtype 1
(text), the string is simply raw data. For text Blobs, transliteration may take place when assigning to

4Note that this is not necessarily the character set used to store the Blob. If the database connection has a default
character set defined then this will take precedence and the Blob text is returned using this character set, unless the Blob
character set is “none” or “octets”.

52

 Working with Blob Data

the AsString property if the source string has a different code page to the one defined for the Blob
in its metadata.

Blobs may be read from or written to files and TStream descendents.

7.2.1 IBlob Reference

Method Description

GetBPB Returns the BPB, if any, used to create/open the Blob

Cancel Cancels the creation of a new blob. The IBlob interface should
not be used after a call to this method and any further use is
undefined.

Close Completes the creation of a new blob. The Blob may not be
written to after a call to Close.

GetBlobID Returns the BlobID assigned to the Blob

GetBlobMode Returns read or write (fbmRead,fbmWrite)

GetBlobSize Returns the current size of the Blob in bytes as held within the
database (undefined for Blobs in write mode).

GetInfo Returns basic Blob information from the server (undefined for
Blobs in write mode).

Read Read the requested number of bytes from the Blob, starting at
the current position. May return fewer bytes if less than the
requested number remain.

Write Append the buffer contents to the Blob.

LoadFromFile Opens and copies (appends) all data from the file to the Blob
(write mode only)

LoadFromStream As above, but reads from a stream

SaveToFile Creates the specified file and copies all data from the Blob to the
file (read mode only).

SaveToStream As above, but copies to a stream.

GetAsString Returns a string containing all data from the Blob. If the Blob
subtype is 1 (text), the string's code page will be set to match the
character set of the Blob, otherwise the code page is CP_NONE.

53

Firebird Pascal API (fbIntf) Guide

Method Description

(read mode only).

SetAsString Writes (appends) all data in the string to the Blob. If the Blob
subtype is 1 (text), transliteration may take place if the string's
code page is different from that required for the Blob. (write mode
only).

GetAttachment Returns the database IAttachment interface for the Blob

GetTransaction Returns the transaction used to create/open the Blob.

7.3 Reading Blob Data

When a dataset's column has an SQL Type of SQL_BLOB and the field in the current row is non-
null, then the ISQLData's AsBlob property (see 6.5) may be used to access the Blob using the
IBlob interface. For example, assuming that MyTable has an integer RowID column and a Blob
column named MyBlobColumn:

var theResults: IResultSet;
 theBlob: IBlob;

begin
 MyStatement := MyAttachment.Prepare(MyTransaction,
 'Select MyBlobColumn,RowID From MyTable Where RowID < ?');
 MyStatement.SQLParams[0].AsInteger := 10;
 theResults := MyStatement.OpenCursor;
 while theResults.FetchNext do
 begin
 theBlob := theResults[0].AsBlob;
 theBlob.SaveToFile('someFileName' + theResults[1].AsString);
 end;
 theResults.Close;

This example iterates through the result set comprising all rows with a RowID less than 10 and
writes out the Blob data to a file with a filename form from constant text plus the RowID value.

Note that an alternative method exists for accessing a Blob using the IAttachment.OpenBlob method.

function OpenBlob(transaction: ITransaction; RelationName,
 ColumnName: AnsiString; BlobID: TISC_QUAD; BPB: IBPB=nil): IBlob;

This method accesses a Blob and returns an IBlob interface to it provided that the Relation (Table)
Name, Column Name and the BlobID is known. The BlobID is returned using the
ISQLData.AsQuad property This method allows for Blob IDs to be read and stored for later use,
opening the Blob only when required.

7.4 Creating or Modifying a Blob

As indicated above, the API user cannot check the ISQLParam to determine the correct character
set id for text blobs when assigning a new blob to a field. Instead, an appropriate Blob has to be
created using a priori knowledge. A Blob is created using the IAttachment.CreateBlob method:

54

 Working with Blob Data

function CreateBlob(transaction: ITransaction; RelationName,
 ColumnName: AnsiString; BPB: IBPB=nil): IBlob; overload;
function CreateBlob(transaction: ITransaction;
 BlobMetaData: IBlobMetaData; BPB: IBPB=nil): IBlob; overload;
function CreateBlob(transaction: ITransaction; SubType: integer;
 CharSetID: cardinal=0; BPB: IBPB=nil): IBlob; overload;

Three variations are defined which differ in the way that the Blob data type is specified. The first
variant provides a relation (i.e. table) name and a column name in that table. Database metadata is
then looked up and used to create a Blob of a type compatible with the column definition.

The second variant achieves the same but provides the Blob metadata directly as an
IBlobMetaData interface. This variant is useful when a Select Statement has already been
prepared for the table in which the Blob is to be assigned and hence the metadata is already
available client side. The IBlobMetaData interface is obtain by calling the
IColumnMetaData.GetBlobMetaData method.

The third variant defines the Blob directly by specifying the required subtype and, for subtype 1
(text), the character set id.

Note that the Blob Parameter Block (BPB) is only required when a Blob Filter is also specified (see 7.6).

Once a Blob has been created, data can be written to the Blob and the Blob identifier assigned to a
field in a database table. For example:

var MyBlob: IBlob;
 MyStatement: IStatement;
begin
 MyBlob := MyAttachment.CreateBlob(MyTransaction,'MyTable','MyBlobColumn');
 MyBlob.LoadFromFile('path to source file');
 MyStatement := MyAttachment.Prepare(MyTransaction,
 'Update MyTable Set MyBlobColumn = ? Where RowID = ?');
 MyStatement.SQLParams[0].AsBlob := MyBlob;
 MyStatement.SQLParams[1].AsInteger := 1;
 MyStatement.Execute;

In the above example, a compatible Blob is created for the MyBlobColumn in MyTable, and its
contents loaded from a file. An Update SQL Statement is then used to save the newly created blob
in the database.

Note that it is important that the same transaction is used to both create the blob and to execute the update
statement.

7.5 Removing a Blob

An existing Blob is simply removed by either replacing it with a new Blob in an update statement,
or using an Update Statement to set the field to NULL.

7.6 Using Blob Filters

Blob Filters may be used to convert a Blob from one data type to another. As described in the
InterBase 6.0 API Guide, there are both built-in and user defined Blob Filters. A Blob Filter is
requested by providing a Blob Parameter Block (BPB) when the Blob is Opened or Created:

55

Firebird Pascal API (fbIntf) Guide

IBPB = interface
 function getCount: integer;
 function Add(ParamType: byte): IBPBItem;
 function getItems(index: integer): IBPBItem;
 function Find(ParamType: byte): IBPBItem;
 property Count: integer read getCount;
 property Items[index: integer]: IBPBItem read getItems; default;
end;

An empty BPB is returned using the IAttachment.AllocateBPB method and, as shown above,
follows the same approach as the IDPB and ITPB interfaces (see). Each parameter in the BPB is
access using the IBPBItem interface:

IBPBItem = interface (IParameterBlockItem) end;

Only four parameters are currently defined for the BPB. Their symbolic constants and use is
described below:

Parameter Type Interpretation

isc_bpb_target_type integer The subtype identifier for the result of the
conversion.

isc_bpb_target_interp integer When the target subtype is 1 (text), this identifies
the target character set id.

isc_bpb_source_type Integer The subtype identifier for the source data

isc_bpb_source_interp Integer When the source subtype is 1 (text), this identifies
the source character set id.

When a Blob Filter is defined for the CreateBlob method, the source sub type should be
appropriate for the data written to the Blob. The target sub type should be compatible with the Blob
column.

Blob Filters can also be used when a Blob is read from the database. In this case, it is not possible
to use the ISQLData.AsBlob property to get the Blob interface as this provides no means to set a
BPB. Instead the ISQLData.GetAsBlob method must be used:

function GetAsBlob(BPB: IBPB): IBlob;

This method also returns an IBlob interface, but with the requested Blob Filter used to read and
convert the Blob Data.

56

 Working with Array Data

8
Working with Array Data

Firebird also supports arrays, where an array column is defined as a multi-dimensional table of a
single data type with well defined bounds on each dimension. Each row may contain a different
array of values.

The implementation of arrays closely follows that of Blobs, such that an array can be understood
as a structured Blob, where the structure is that of the array. A user could implement their own
arrays using Blobs, or use the built in support.

8.1 Array Metadata

Array metadata is available for each column that has an SQLType of SQL_ARRAY. The array
metadata interface is returned by the IColumnMetaData.GetArrayMetaData method and is:

57

Firebird Pascal API (fbIntf) Guide

 TArrayBound = record
 UpperBound: short;
 LowerBound: short;
 end;
TArrayBounds = array of TArrayBound;

IArrayMetaData = interface
 function GetSQLType: cardinal;
 function GetSQLTypeName: AnsiString;
 function GetScale: integer;
 function GetSize: cardinal;
 function GetCharSetID: cardinal;
 function GetTableName: AnsiString;
 function GetColumnName: AnsiString;
 function GetDimensions: integer;
 function GetBounds: TArrayBounds;
end;

Array metadata is arguably more useful than Blob metadata and provides the information that
defines the array, including the SQL data type of each array element, the scale for fixed point data
types and the character set id and size for text type. It also identifies the number of dimensions in
the array and the bounds for each dimension.

It is also possible to create an IArrayMetadata from supplied parameters using
IAttachment.CreateArrayMetaData.

8.2 The IArray Interface

An array of data values is accessed using the IArray interface.

IArray = interface(IArrayMetaData)
 function GetArrayID: TISC_QUAD;
 procedure Clear;
 function IsEmpty: boolean;
 procedure PreLoad;
 procedure CancelChanges;
 procedure SaveChanges;
 function GetMetaData: IArrayMetaData;
 function GetAsInteger(index: array of integer): integer;
 function GetAsBoolean(index: array of integer): boolean;
 function GetAsCurrency(index: array of integer): Currency;
 function GetAsInt64(index: array of integer): Int64;
 function GetAsDateTime(index: array of integer): TDateTime;
 function GetAsDouble(index: array of integer): Double;
 function GetAsFloat(index: array of integer): Float;
 function GetAsLong(index: array of integer): Long;
 function GetAsShort(index: array of integer): Short;
 function GetAsString(index: array of integer): AnsiString;
 function GetAsVariant(index: array of integer): Variant;
 procedure SetAsInteger(index: array of integer; AValue: integer);
 procedure SetAsBoolean(index: array of integer; AValue: boolean);
 procedure SetAsCurrency(index: array of integer; Value: Currency);
 procedure SetAsInt64(index: array of integer; Value: Int64);
 procedure SetAsDate(index: array of integer; Value: TDateTime);
 procedure SetAsLong(index: array of integer; Value: Long);
 procedure SetAsTime(index: array of integer; Value: TDateTime);
 procedure SetAsDateTime(index: array of integer; Value: TDateTime);
 procedure SetAsDouble(index: array of integer; Value: Double);
 procedure SetAsFloat(index: array of integer; Value: Float);
 procedure SetAsShort(index: array of integer; Value: Short);
 procedure SetAsString(index: array of integer; Value: AnsiString);
 procedure SetAsVariant(index: array of integer; Value: Variant);
 procedure SetBounds(dim, UpperBound, LowerBound: integer);
 function GetAttachment: IAttachment;

58

 Working with Array Data

 function GetTransaction: ITransaction;
 procedure AddEventHandler(Handler: TArrayEventHandler);
 procedure RemoveEventHandler(Handler: TArrayEventHandler);
 end;

This interface provides the getters and setters for array elements of each data type available for
arrays. In this case, each getter and setter requires an index that is an array of integers, with one
integer for each dimension. The order in which the integers are provided is the same as in which
the bounds are described in the metadata. Automatic type conversion takes place whenever types
are compatible and follows the same rules as for ISQLData and ISQLParam. IArray inherits from
IArrayMetaData.

Additionally:

Method Description

GetArrayID Returns the internal array ID. This is an ISC_QUAD (see Blobs).
Any changes will be saved at this point.

Clear Re-initialises the array to an empty array

IsEmpty Returns true if the array is empty; an array is empty when it is first
created or after a call to “clear”.

PreLoad Normally an array only reads its data from the database the first
time a getter method is called. PreLoad forces a database read
before any getter method is called.

CancelChanges Cancel any unsaved changes and restores the array to its initial
state (new arrays) or refreshes the array from the database.

SaveChanges Forces a write to the database of any changes to the array.

SetBounds Restricts the IArray to a subrange of the array held in the database.

GetAttachment Returns the database IAttachment interface for the Blob

GetTransaction Returns the transaction used to create/open the Blob.

AddEventHandler See 8.7

RemoveEventHandler See 8.7

8.3 Reading Array Data

Array data is read from the database in much the same way as blob data.

59

Firebird Pascal API (fbIntf) Guide

When a dataset's column has an SQL Type of SQL_ARRAY and the field in the current row is non-
null, then the ISQLData's AsArray property (see 6.5) may be used to access the array using the
IArray interface. For example, assuming that MyTable has an integer RowID column and an array
column named MyArrayColumn, for an one dimensional array of integers:

var theResults: IResultSet;
 theArray: IArray;
 Bounds: TArrayBounds;
 i,j: integer;
begin
 MyStatement := MyAttachment.Prepare(MyTransaction,
 'Select MyArrayColumn,RowID From MyTable Where RowID < ?');
 MyStatement.SQLParams[0].AsInteger := 10;
 theResults := MyStatement.OpenCursor;
 while theResults.FetchNext do
 begin
 theArray := theResults[0].AsArray;
 if theArray.GetDimensions = 1 then
 begin
 Bounds := theArray.GetBounds;
 for i := Bounds[0].LowerBound to Bounds[0].UpperBound do
 write('(',i,': ',theArray.GetAsString([i]),') ');
 writeln;
 end;
 end;
 theResults.Close;

The above will write out all array values and their index. Although an integer array is assumed for
the example, the above should work for all array types that can be converted to strings.

Note that an alternative method exists for accessing an array using the IAttachment.OpenArray method.

function OpenArray(transaction: ITransaction;
 RelationName, ColumnName: AnsiString; ArrayID: TISC_QUAD): IArray;

This method accesses an array and returns an IArray interface to it provided that the Relation
(Table) Name, Column Name and the ArrayID is known. The ArrayID is returned using the
ISQLData.AsQuad property This method allows for ArrayID to be read and stored for later use,
opening the array only when required.

8.4 Creating or Modifying an Array

The API user cannot use the ISQLParam interface to determine array metadata. Instead, an
appropriate array has to be created using a priori knowledge. An array is created using the
IAttachment.CreateArray method:

function CreateArray(transaction: ITransaction; RelationName,
 ColumnName: AnsiString): IArray; overload;
function CreateArray(transaction: ITransaction;
 ArrayMetaData: IArrayMetaData): IArray; overload;

Two variations are defined which differ in the way that the array metadata is identified. The first
variant provides a relation (i.e. table) name and a column name in that table. Database metadata is
then looked up and used to create an array of a type compatible with the column definition.

The second variant achieves the same but provides the array metadata directly as an
IArrayMetaData interface. This variant is useful when a Select Statement has already been
prepared for the table in which the array is to be assigned and hence the metadata is already

60

 Working with Array Data

available client side. The IArrayMetaData interface is obtain by calling the
IColumnMetaData.GetArrayMetaData method.

Once an array has been created, data can be written to the array and the array identifier assigned
to a field in a database table. For example:

var MyArray: IArray;
 MyStatement: IStatement;
begin
 MyArray := MyAttachment.CreateBlob(MyTransaction,'MyTable','MyArrayColumn');
 MyArray.SetAsInteger([0],1);
 {other array element values may also be assigned here}

 MyStatement := MyAttachment.Prepare(MyTransaction,
 'Update MyTable Set MyArrayColumn = ? Where RowID = ?');
 MyStatement.SQLParams[0].AsArray := MyArray;
 MyStatement.SQLParams[1].AsInteger := 1;
 MyStatement.Execute;

In the above example, a compatible array is created for the MyArrayColumn in MyTable, and its
element values assigned. An Update SQL Statement is then used to save the newly created array
in the database.

Note that it is important that the same transaction is used to both create the array and to execute the update
statement.

8.5 Reducing Array Bounds

If only a small subrange of a very large array needs to be accessed or modified, the IArray
interface provide the SetBounds method to reduce the amount of data transferred between client
and servier.

procedure SetBounds(dim, UpperBound, LowerBound: integer);

This method may be called once per dimension in order to reduce the upper and/or lower bounds
of the array. This does not change the definition of the array in the database or its metadata. It just
reduces the range in which the IArray operates.

A call to SetBounds always re-initialises the array and writes out any changes before it is actioned.
It is therefore important that it is called on an IArray before any element is read or modified, or the
PreLoad method is called. Otherwise, it will only increase data transfer overhead instead of
reducing it.

8.6 Removing an Array

An existing array is simply removed by either replacing it with a new array in an update statement,
or using an Update Statement to set the field to NULL.

8.7 Event Handlers

One or more event handlers may be registered with a given IArray so that modifications to the
array can be reported to other parts of your application. The AddEventHandler method registers a
new event handler, while the RemoveEventHandler method will remove it from the list of event
handlers.

61

Firebird Pascal API (fbIntf) Guide

Each event handler must be a typed procedure as follows:

TArrayEventReason = (arChanging,arChanged);
TArrayEventHandler = procedure(Sender: IArray;
 Reason: TArrayEventReason) of object;

 As implied by the Event Reason parameter, the event handler is called once before a change is
applied and once after it is applied.

62

 Working with Character Sets

9
Working with Character Sets

Ideally all applications and databases would work with the same universal character set (e.g.
UTF8). However, while increasingly this is true, there will always be exceptions due to legacy
databases and applications, and to handle characters that are for one reason or another outside of
UTF8.

A Firebird Database can specify a wide range of character sets for character and text mode blob
columns. A client application can choose to read each column in its native character set or to have
the Firebird Client library transliterate on its behalf.

Furthermore, from FPC 3.0.0 onwards, FPC AnsiStrings have their code page as a property of the
string (see http://wiki.freepascal.org/FPC_Unicode_support#DefaultSystemCodePage), where the
code page identifies the character set held by the string (e.g. UTF8, ASCII, WIN1252, etc).

The Firebird Pascal API aims to ensure that the AnsiString code page for strings returned by the
database API is appropriate for the text data received from the database. When strings are written
to the database, the API again aims to ensure that, if necessary, text strings are transliterated from
the string data's code page to the character set expected by the database.

9.1 Firebird Character Sets

Mainly for legacy reasons, Firebird supports a wide range of character sets including UTF8, ASCII,
ISO 8859 variants, Cyrillic, Chinese, Thai, Korean and Japanese character sets. It also supports
two untyped character sets: NONE and OCTETS. Firebird character sets either have a fixed byte
width of one (e.g. ASCII) or a variable byte width (UTF8 characters can be up to four bytes in
length). Fixed two byte character sets, such as UTF16, are not supported. The character set
determines both text data semantics and collation ordering.

The character sets supported by a Firebird database can be listed by the query:

Select RDB$CHARACTER_SET_NAME,RDB$CHARACTER_SET_ID
 from RDB$CHARACTER_SETS order by 2

63

http://wiki.freepascal.org/FPC_Unicode_support#DefaultSystemCodePage

Firebird Pascal API (fbIntf) Guide

When a database is created, a default character set for the database is also defined. This is the
character set used for fixed and variable length text and text mode Blobs unless a different
character set is explicitly given when a column's data type is defined or updated.

9.2 The Database Connection and the Default Character Set

Connections to Firebird databases may also have a default character set defined. This does not
have to be the same character set as that defined when the database was created. When a
connection default character set is defined, all text data in the database is returned in that
character set, transliterating if necessary. The only exception is for database columns with a
character set of NONE or OCTETS. In this case transliteration never occurs.

Likewise, all data sent to the database is expected to be in the connection default character set
and may, if necessary, be transliterated when it is saved if the target column's character set is
different.

A connection default character set is defined by adding an isc_dpb_lc_ctype parameter to the DPB
used to connect to the database, and setting its value to the character set name. The character set
name must be a character set name recognised by Firebird. e.g.

MyDPB.Add(isc_dpb_lc_ctype).AsString := 'UTF8';

When no default connection character set is defined then all text is returned in whatever character
set is stored in the database. No transliteration takes place. Similarly, all data sent to the database
is assumed to be in the correct character set.

Note that if the text data sent to the database contains invalid byte sequences for the column's character set
or the default connection character set, if any, then a Database Engine error will be raised indicating a
transliteration error.

9.3 Code Pages

The term “code page” refers to the character set and associated collation rules used for an entire
application or for each string processed by the application.

FPC from 3.0.0 onwards associates a code page with each AnsiString. The default is usually
UTF8, referred to by the symbolic constant CP_UTF8. Many other code pages exist including the
CP_NONE code page which is used for untyped string data. AnsiStrings carry the codepage with
them. It is also possible to transliterate a string from one code page to another if necessary.

In Lazarus, it is generally advisable to keep to UTF8 as many LCL routines implicitly assume
UTF8.

9.4 Transliteration Rules

For all text columns including text mode Blobs, the IColumnMetadata provides the character set
applicable to the text and the associated code page. The character set will be either:

• The connection default character set, or
• Character set 0 (NONE) or 1 (OCTETS), when the original column has a character set of

NONE or OCTETS
• The character set used to define the column, if no connection default character set is

specified.

64

 Working with Character Sets

The code page indicated in the IColumnMetadata is always the code page associated with the
Firebird Character Set. The IFirebirdAPI interface provides a set of functions that can be used to
query the mapping table between the two. i.e.

function GetCharsetName(CharSetID: integer): AnsiString;
function CharSetID2CodePage(CharSetID: integer;
 var CodePage: TSystemCodePage): boolean;
function CodePage2CharSetID(CodePage: TSystemCodePage;
 var CharSetID: integer): boolean;
function CharSetName2CharSetID(CharSetName: AnsiString;
 var CharSetID: integer): boolean;
function CharSetWidth(CharSetID: integer; var Width: integer): boolean;

When a string is returned from the Firebird Pascal API (e.g. using ISQLData.AsString), the string's
code page will be set to the code page given by the column metadata.

When a string is assigned to a field using the Firebird Pascal API (e.g. using ISQLParam.AsString),
the string's code page is compared with that specified in the column metadata. If they are different
then the string is transliterated into the code page specified by the column metatadata before it is
transferred to the database.

Note that the Firebird Character Set “NONE” is mapped to codepage CP_ACP i.e. the default ANSI code
page, while the character set “OCTETS” is mapped to codepage CP_NONE. The former reflects the fact it
occurs typically in legacy databases where the system default character set is assumed, while the latter is
used for untyped binary data.

9.5 Text Blob Handling

Text Mode Blobs generally behave the same as fixed length and variable length text columns in
respect of character sets, code pages and transliteration. The Blob metadata identifies both the
character set and code page used to transfer the Blob.

However, when Blob Filters are used for text mode Blobs, no transliteration takes place regardless
of the code page of the string or database column. If you use a Blob Filter for a text mode Blob, the
API assumes that you know what you are doing.

65

 Handling Error Conditions

10
Handling Error Conditions

Except for the exceptions discussed below, the Firebird Pascal Client API handles all errors by
throwing an exception. This may be an EIBClientError exception or an EIBInterBaseError
exception.

 EIBError = class(EDatabaseError)
 private
 FSQLCode: Long;
 public
 constructor Create(ASQLCode: Long; Msg: AnsiString);
 property SQLCode: Long read FSQLCode;
 end;

 { EIBInterBaseError - Firebird Engine errors}

 EIBInterBaseError = class(EIBError)
 private
 FIBErrorCode: Long;
 public
 constructor Create(Status: IStatus); overload;
 constructor Create(ASQLCode: Long; AIBErrorCode: Long; Msg: AnsiString);
overload;
 property IBErrorCode: Long read FIBErrorCode;
 end;

 {IB Client Exceptions}
 EIBClientError = class(EIBError);

The EIBInterBaseError exception is used to report errors returned by the Firebird Database
Engine, while the EIBClientError is used to report Firebird Pascal Client API exceptions.
EIBClientError is also used by IBX for Lazarus.

For an EIBInterBaseError exception, the SQLCode property corresponds to the SQL Error Code
defined for the Firebird error, and the IBErrorCode property corresponds to the Firebird
EngineCode. Symbolic names for each defined Firebird EngineCode may be found in the
IBErrorCodes unit.

67

Firebird Pascal API (fbIntf) Guide

10.1 Exceptional Error Handling Cases

The IFirebirdAPI methods OpenDatabase and CreateDatabase by default also return exceptions
on error. However, these two calls also have an optional paramters RaiseExceptionOnError. By
default this is true. If set to false, then the methods return silently on error and return a nil interface
pointer.

In this case, the error can still be identified and handled using the IStatus interface.

10.2 The IStatus Interface

The IStatus interface is returned from a call for the GetStatus method of the IFirebirdAPI. It is
defined as:

 IStatus = interface
 function GetIBErrorCode: Long;
 function Getsqlcode: Long;
 function GetMessage: AnsiString;
 function CheckStatusVector(ErrorCodes: array of TFBStatusCode): Boolean;
 function GetIBDataBaseErrorMessages: TIBDataBaseErrorMessages;
 procedure SetIBDataBaseErrorMessages(Value:

 TIBDataBaseErrorMessages);
 end;

The GetIBErrorCode and Getsqlcode methods can be used to query the Firebird Engine Code
and SQL Error Code returned by the last Firebird Client API call, and GetMessage can be used to
query the text version of the error.

It is also possible to raise a EIBInterBaseError exception from an IStatus interface by the following
code:

var Status: IStatus;
…
Status := FirebirdAPI.GetStatus;
raise EIBInterBaseError.Create(Status);

The IStatus interface can also be used to customise the error message returned, using the
IStatus.SetIBDataBaseErrorMessages method. This can be used to set any combination of:

TIBDataBaseErrorMessage = (ShowSQLCode,
 ShowIBMessage,
 ShowSQLMessage);

• ShowSQLCode adds the integer value of the SQL Error Code.
• ShowSQLMessage adds the text message associated with the SQL Error Code.
• ShowIBMessage adds the error message correspondiing to the EngineCode.

By default the generated error message contains all parts.

68

 Working with Events

11
Working with Events

Firebird Events are alerts raised outside of the normal process flow and are generated from the
Firebird Procedure and Trigger Language using the “POST_EVENT” PSQL Statement.
POST_EVENT queues a name alert which is sent to all active database clients which have
registered to receive that alert.

11.1 The IEvents Interface

The IEvents interface is used to register for one or more named events and to wait either
synchronously or asynchronously for the event.

IEvents = interface
 procedure GetEvents(EventNames: TStrings);
 procedure SetEvents(EventNames: TStrings); overload;
 procedure SetEvents(EventName: AnsiString); overload;
 procedure Cancel;
 function ExtractEventCounts: TEventCounts;
 procedure WaitForEvent;
 procedure AsyncWaitForEvent(EventHandler: TEventHandler);
 function GetAttachment: IAttachment;
end;

An IEvents interface is returned by IAttachment.GetEventHandler

function GetEventHandler(Events: TStrings): IEvents; overload;
function GetEventHandler(Event: AnsiString): IEvents; overload;

Two variants of GetEventHandler are provided, creating an event handler for either one named
event or for a list of events. Although an IEvents interface is created for one or more named
events, the events on which the interface is waiting can be modified at any time using
IEvents.SetEvents.

69

Firebird Pascal API (fbIntf) Guide

11.2 Asynchronous Event Handling

Creating an IEvents interface does not of itself cause the client to register for any events. This only
happens when the caller explicitly waits for an event. To wait for an event asynchronously, the
AsyncWaitForEvent method is called specifying an event callback with the type:

TEventHandler = procedure(Sender: IEvents) of object

AsyncWaitForEvent always returns immediately. When an alert is received from the database
server for any of the named events handled by the IEvents, the event handler callback is called.

Note: the callback will occur within a different thread to the application main thread. It is the responsibility of
the programmer to ensure that proper inter-thread communication takes place. This may include the use of
TThread.Synchronize in order to process the alert within the main thread, or to use thread synchronisation
mechanisms such as Critical Sections.

When a callback procedure is called, it should, at some point call IEvents.ExtractEventCounts to
determine which event has been posted and, if necessary to check the event counts.
IEvents.ExtractEventCounts returns a TEventCounts array, with one element for each event.

TEventInfo = record
 EventName: AnsiString;
 Count: integer;
end;

TEventCounts = array of TEventInfo;

For each event, a counter is returned giving the number of times the event has been seen on this
connection. An increased event count from the last callback indicates that the named event has
been raised.

AsyncWaitForEvent is a “one shot”. Once a callback has occurred, another call to
AsyncWaitForEvent must be made in order to wait for more events.

AsyncWaitForEvent can be cancelled using the IEvents.Cancel method.

Changing the event names using IEvents.SetEvents is also an implicit Cancel and
AsyncWaitForEvent should be called after changing the set of event names.

11.3 Synchronous Event Handling

The IEvents interface also supports a synchronous wait with the calling thread becoming blocked
until an alert is received. It is unlikely that this will ever be used in an application's main thread, but
may be appropriate for multi-threaded applications.

The IEvents.WaitForEvent method is used for a synchronous wait and returns only when an alert is
raised. IEvents.ExtractEventCounts must still be used to check which event was raised.

IEvents.Cancel should allow a separate thread to cancel a synchronous wait.

70

 Working with Services

12
Working with Services

The Service Manager allows you to perform database maintenance tasks such as database
backup and restore, shutdown and restart, garbage collection, and scanning for invalid data
structures. It also supports creating, modifying, and removing user entries in the security database,
and requesting information about the configuration of databases and the server. As with attaching
to a database, attaching to a Service Manager requires a Service Parameter Block (SPB).

12.1 The Service Parameter Block (SPB)

An SPB is allocated using the IFirebirdAPI.AllocateSPB method and has the usual set of methods
for a parameter block (see):

ISPB = interface
 function getCount: integer;
 function Add(ParamType: byte): ISPBItem;
 function getItems(index: integer): ISPBItem;
 function Find(ParamType: byte): ISPBItem;
 property Count: integer read getCount;
 property Items[index: integer]: ISPBItem read getItems; default;
end;

This interface follows the pattern established for the DPB (see), with the Add method used to add
a new item, a Find method to locate an existing item and the means provided to enumerate a SPB.
The ISPBItem is subclass of the IParameterBlockItem interface (see):

ISPBItem = interface(IParameterBlockItem) end;

For example:

71

Firebird Pascal API (fbIntf) Guide

var MySPB: ISPB;
begin
 MySPB := FirebirdAPI.AllocateSPB;
 MySPB.Add(isc_spb_user_name).AsString := 'SYSDBA';
 MySPB.Add(isc_spb_password).AsString := 'masterkey';

This example creates an SPB and adds a user name and password to the SPB. This provides the
login credentials. The login user must have sufficient privilege to use the Service Manager for the
intended purpose.

12.2 Attaching to the Service Manager

A connection is established with the Service Manager on a given Firebird Server using the
IFirebirdAPI.GetServiceManager method:

function GetServiceManager(ServerName: AnsiString; Protocol: TProtocol;
 SPB: ISPB): IServiceManager;

This method requires the name of the server, the protocol use to connect to the server and the
SPB. Alternative (and largely historical) protocols to TCP are discussed in the InterBase 6.0 API
Guide. In most cases, the protocol should be set to TCP, and the Server Name is the server's
domain name.

The IFirebirdAPI.GetServiceManager method returns an IServiceManager interface:

IServiceManager = interface
 function getSPB: ISPB;
 function getServerName: AnsiString;
 procedure Attach;
 procedure Detach(Force: boolean=false);
 function IsAttached: boolean;
 function AllocateSRB: ISRB;
 function AllocateSQPB: ISQPB;
 procedure Start(Request: ISRB);
 function Query(SQPB: ISQPB; Request: ISRB) :IServiceQueryResults; overload;
 function Query(Request: ISRB) :IServiceQueryResults; overload;
end;

12.2.1 IServiceManager Reference

Method Name Description

getSPB Returns the SPB used to attached to the service manager

getServerName Returns the attached Server Name

Attach Reattach to the service manager

Detach Detach from the service manager

IsAttached Returns true if a connection exists to the service manager

AllocateSRB Returns an empty Service Request Block (SRB)

72

 Working with Services

AllocateSQPB Returns an empty Service Query Parameter Block (SQPB)

Start Starts the service requested by the SRB

Query Queries an active service, or requests information from the server,
or sets properties

12.3 Starting a Service

A service is started using the IServiceManager.Start method and by providing an appropriate
Service Request Block (SRB). The SRB specifies the service to run and any parameters needed.

The method returns when the service is started or raises an exception if it is unable to start the
requested service.

12.3.1 The Service Request Block (SRB)

An empty SRB is created by the IServiceManager.AllocateSRB method, which returns an ISRB
interface to the SRB.

ISRB = interface
 function getCount: integer;
 function Add(ParamType: byte): ISRBItem;
 function getItems(index: integer): ISRBItem;
 function Find(ParamType: byte): ISRBItem;
 property Items[index: integer]: ISRBItem read getItems; default;
end;

This follows the same approach for creating and maintaining parameter blocks as used for other
parameter blocks, such as the DPB (see). New SRB items are added using the Add method and
can be returned by type using the find method. The SRB items may also be enumerated using the
Items property. An SRB item is accessed using the ISRBItem interface, which is a subclass of the
IParameterBlockItem interface (see)

ISRBItem = interface(IParameterBlockItem) end;

For example:

 Req := Service.AllocateSRB;
 Req.Add(isc_action_svc_backup); {Request the backup service}
 Req.Add(isc_spb_dbname).AsString := 'MyDatabase'; {this is assumed to be an
 alias}
 Req.Add(isc_spb_bkp_file).AsString := '/home/backups/mydatabase.gbk';
 try
 Service.Start(Req);

starts a backup service and requests that “MyDatabase” on “MyServer” is backed up to the file
'/home/backups/mydatabase.gbk' on the server.

73

Firebird Pascal API (fbIntf) Guide

12.3.2 List of Services

The following services may be started on the Service Manager. In each case, the service is
requested by creating an SRB, adding the symbolic constant for the service (no value), and then
adding each parameter (and parameter value) as specified for the service.

Service Parameters Purpose

isc_action_svc_display_user List active users

isc_action_svc_db_stats isc_spb_dbname,
isc_spb_options

Requesting Database Statistics

isc_action_svc_backup isc_spb_dbname,
isc_spb_bkp_file,
isc_spb_bkp_length,
isc_spb_bkp_factor,
isc_spb_options,
isc_spb_verbose

Database backup

isc_action_svc_restore isc_spb_dbname,
isc_spb_bkp_file,
isc_spb_res_length,
isc_spb_res_buffers,
isc_spb_res_page_size,
isc_spb_res_access_mode,
isc_spb_options,
isc_spb_verbose

Database Restore

See the InterBase 6.0 API Guide for a detailed description of each parameter and parameter value

12.4 Querying a Service

The IServiceManager.Query method is used to either:

• Query a running service (e.g. a database backup)

• Request information from the service manager.

• Set Database or Server Properties.

Two variants of the IServiceManager.Query method are provided. One provides both a Service
Query Parameter Block (SQRB) and a Service Request Block (SRB). The other requires only an
SRB. Both variants return an interface to the Service Query Results (SQR). The SQRB is often not
required and hence a variation is defined that omits it from the interface.

74

 Working with Services

12.4.1 The Service Query Parameter Block (SQRB)

The Service Query Parameter Block (SQRB) follows the standard pattern for parameter blocks
(see Error: Reference source not found), and is defined as:

ISQPB = interface
 function getCount: integer;
 function Add(ParamType: byte): ISQPBItem;
 function getItems(index: integer): ISQPBItem;
 function Find(ParamType: byte): ISQPBItem;
 property Count: integer read getCount;
 property Items[index: integer]: ISQPBItem read getItems; default;
end;

ISQPBItem = interface(IParameterBlockItem)
 function CopyFrom(source: TStream; count: integer): integer;
end;

Note that the ISQPBItem interface extends the standard IParameterBlockItem interface to include a
CopyFrom (stream) method.

There are only two current uses for the SQPB:

1. An SQPB which includes an isc_info_svc_timeout parameter is used to provide a timeout
(in seconds and encoded as an integer) to limit the response time for a Query. The query
returns within this time if it cannot otherwise complete.

2. An SQPB which includes an isc_info_svc_line parameter is used to return data (in
successive chunks) for the service's stdin. The parameter value provides the data as a long
string (up to 65535 bytes), although in practice as the whole buffer is limited to 65535
bytes, the actual string length must be reduced to take account of the parameter byte,
length field and any isc_info_svc_timeout parameter and value.

The latter case is used for database restore (see 12.6). The CopyFrom method provides a
potentially more convenient way of setting the string value from a TStream. This method is used to
set the value of an isc_info_svc_line parameter as up to “count” bytes” read from the current
stream position (zero implies the maximum possible). It returns the actual number of bytes written.
The CopyFrom method will always try and maximise the use of the parameter buffer and will use
up all remaining space.

12.4.2 The Service Request Block (SRB)

If a service has already been started and is still active then the SRB is used to request information
from the service. Otherwise, it is used to request information or to set database or server
properties.

The Service Request Block (SRB) follows the standard pattern for parameter blocks (see Error:
Reference source not found), and is defined as:

ISRB = interface
 function getCount: integer;
 function Add(ParamType: byte): ISRBItem;
 function getItems(index: integer): ISRBItem;
 function Find(ParamType: byte): ISRBItem;
 property Count: integer read getCount;
 property Items[index: integer]: ISRBItem read getItems; default;
end;

75

Firebird Pascal API (fbIntf) Guide

ISRBItem = interface(IParameterBlockItem) end;

12.4.2.1 Running Services

Service Request Information Requested

List Users isc_info_svc_get_users A list of active users

Database Statistics isc_info_svc_line Returns the next line of (plain
text) output from the database
statistics service

Database Backup isc_info_svc_line The next line of (plain text)
output from the database
backup service (backup to
server file only)

isc_info_svc_to_eof The next chunk of the backup
archive (backup to stdout only).

Database Restore isc_info_svc_line The next line of (plain text)
output from the database
restore service

isc_info_svc_stdin The maximum acceptable byte
count to return as stdin data.

12.4.2.2 Information Requests

Information Group Request Information Returned

Version Information isc_info_svc_version The version of the Services
Manager

isc_info_svc_server_version The version of the Firebird
server

isc_info_svc_implementation The implementation string, or
platform, of the server

Configuration Parameters isc_info_svc_get_env_lock The location of the Firebird lock
manager file on the server

isc_info_svc_get_config Contents of Firebird.conf

76

 Working with Services

isc_info_svc_get_env Location of the Firebird root
directory on the server

isc_info_svc_get_env_msg Location of the Firebird
messages file on the server.

isc_info_svc_user_dbpath Location of the security
database on the server

Database Information isc_info_svc_svr_db_info The number of database
attachments and databases
currently active on the server

Limbo Transactions isc_info_svc_limbo_trans Limbo transaction information
for unresolved distributed
transactions

12.4.2.3 Setting Properties

These requests correspond to the options of the gfix command line utility and are described in the
InterBase 6.0 API Guide Table 12.5

12.4.3 The Query Response

The Query method, on successful completion, returns an IServiceQueryResults interface to the
Service Query Response. This can be enumerated to determine and process the query results.
This interface is defined as:

IServiceQueryResults = interface
 function getCount: integer;
 function getItem(index: integer): IServiceQueryResultItem;
 function find(ItemType: byte): IServiceQueryResultItem;
 property Items[index: integer]: IServiceQueryResultItem
 read getItem; default;
 property Count: integer read getCount;
end;

The main use of this interface is to process “Count” items in turn. However, it may also be used to
locate (find) a specific response item by its symbolic constant. Each response item is return as an
IServiceQueryResultItem interface.

77

Firebird Pascal API (fbIntf) Guide

IServiceQueryResultSubItem = interface
 function getItemType: byte;
 function getSize: integer;
 procedure getRawBytes(var Buffer);
 function getAsString: AnsiString;
 function getAsInteger: integer;
 function getAsByte: byte;
 function CopyTo(stream: TStream; count: integer): integer;
 property AsString: AnsiString read getAsString;
 property AsInteger: integer read getAsInteger;
 property AsByte: byte read getAsByte;
 end;

IServiceQueryResultItem = interface(IServiceQueryResultSubItem)
 function getCount: integer;
 function getItem(index: integer): IServiceQueryResultSubItem;
 function find(ItemType: byte): IServiceQueryResultSubItem;
 property Items[index: integer]: IServiceQueryResultSubItem
 read getItem; default;
 property Count: integer read getCount;
end;

Each query response may either be a single value (for a given response type) or may itself be a list
of values. This is reflected in the IServiceQueryResultItem interface where the response may either
be accessed using the getters for the (sub) item type or itself enumerated for “sub items”.

The responses that may be expected for each service request are identified in the InterBase 6.0
API Guide. Appendix B. provides an example of the enumeration of a service response. The
CopyTo method applies to string item types only and writes the contents of the string to the
supplied stream.

12.5 Detaching from the Service Manager

The Service Manager connection is automatically closed when the service manager interface goes
out of scope. It may also be explicitly closed by called the Detach method. In the latter case, the
Attach method may be called to reconnect to the service manager.

12.6 Backup and Restore Services

Database backup and restore may be performed either to or from a file on the server, or to and
from a file on the client system.

12.6.1 Backup and Restore on the Server

Backup and restore to or from a file on the server is the simple case. All that is necessary is to
specify the name of the database and backup file(s) and to monitor the output of the process until
completion. For example, for backup:

var SPB: ISPB;
 Service: IServiceManager;
 Req: ISRB;
 Results: IserviceQueryResults;
 Response: IServiceQueryResultSubItem;
 line: AnsiString;
begin
 SPB := FirebirdAPI.AllocateSPB;
 SPB.Add(isc_spb_user_name).setAsString('SYSDBA');
 SPB.Add(isc_spb_password).setAsString('masterkey');
 Service := FirebirdAPI.GetServiceManager('myserver domain name',TCP,SPB);

78

 Working with Services

 Req := Service.AllocateSRB;
 Req.Add(isc_action_svc_backup);
 Req.Add(isc_spb_dbname).AsString := 'MyDatabase';
 Req.Add(isc_spb_bkp_file).AsString := 'path to backup file';
 Req.Add(isc_spb_verbose);
 try
 Service.Start(Req);
 Req := Service.AllocateSRB;
 Req.Add(isc_info_svc_line);
 repeat
 line := '';
 Results := Service.Query(Req);
 Response := Results.Find(isc_info_svc_line);
 if Response <> nil then
 begin
 line := Response.AsString;
 writeln(line);
 end;
 until line = '';
 writeln('Backup Complete');
 except on E: Exception do
 writeln('Backup Service Error: ',E.Message);
 end;
end;

The above example, starts the service and then loops round issuing queries until there is no
response. Database restore follows the same pattern.

12.6.2 Backup and Restore using a File on the Client System

In principle, this is the same as the above except that the backup file is set to 'stdout' (for backup)
or 'stdin' for restore. The client additionally has to process the stdout data or to provide the stdin
data.

The stdout data for backup is provided by the isc_info_svc_to_eof request item. This is mutually
exclusive with verbose output. The following example illustrates how backup to stdout is
processed.

var SPB: ISPB;
 Service: IServiceManager;
 Req: ISRB;
 Results: IServiceQueryResults;
 Response: IServiceQueryResultSubItem;
 bakfile: TFileStream;
 bytesWritten: integer;
begin
 SPB := FirebirdAPI.AllocateSPB;
 SPB.Add(isc_spb_user_name).setAsString('SYSDBA');
 SPB.Add(isc_spb_password).setAsString('masterkey');
 Service := FirebirdAPI.GetServiceManager('myserver domain name',TCP,SPB);

 bakfile := TFileStream.Create('path to backup file',fmCreate);
 Req := Service.AllocateSRB;
 Req.Add(isc_action_svc_backup);
 Req.Add(isc_spb_dbname).AsString := 'MyDatabase';
 Req.Add(isc_spb_bkp_file).AsString := 'stdout';
 try
 Service.Start(Req);
 Req := Service.AllocateSRB;
 Req.Add(isc_info_svc_to_eof);
 repeat
 bytesWritten := 0;

79

Firebird Pascal API (fbIntf) Guide

 Results := Service.Query(Req);
 Response := Results.Find(isc_info_svc_to_eof);
 if Response <> nil then
 bytesWritten := Response.CopyTo(bakfile,0);
 until bytesWritten = 0;
 writeln('Backup Complete');
 except on E: Exception do
 begin
 writeln('Backup Service Error: ',E.Message);
 bakfile.free;
 DeleteFile('path to backup file');
 end;
 end;
 bakfile.free;
end;

Restore to stdin is more complex and requires use of the Service Query Parameter Block to upload
the data, as shown in the following example:

var SPB: ISPB;
 Service: IServiceManager;
 Req: ISRB;
 Results: IServiceQueryResults;
 bakfile: TFileStream;
 bytesWritten: integer;
 bytesAvailable: integer;
 i: integer;
 ReqLength: integer;
 SQPB: ISQPB;
begin
 SPB := FirebirdAPI.AllocateSPB;
 SPB.Add(isc_spb_user_name).setAsString('SYSDBA');
 SPB.Add(isc_spb_password).setAsString('masterkey');
 Service := FirebirdAPI.GetServiceManager('myserver domain name',TCP,SPB);

 bakfile := TFileStream.Create('path to backup file',fmOpenRead);
 bytesAvailable := BakFile.Size;
 Req := Service.AllocateSRB;
 Req.Add(isc_action_svc_restore);
 Req.Add(isc_spb_dbname).AsString := 'MyDatabase';
 Req.Add(isc_spb_bkp_file).AsString := 'stdin';
 Req.Add(isc_spb_verbose);
 Req.Add(isc_spb_options).SetAsInteger(isc_spb_res_create);
 try
 ReqLength := 0;
 repeat
 SQPB := Service.AllocateSQPB;
 if ReqLength > 0 then
 bytesWritten :=
 SQPB.Add(isc_info_svc_line).CopyFrom(BakFile,ReqLength);
 bytesAvailable -= bytesWritten;
 Req := Service.AllocateSRB;
 Req.Add(isc_info_svc_stdin);
 Req.Add(isc_info_svc_line);
 Results := Service.Query(SQPB,Req);

 {Now process the query response}
 for i := 0 to Results.Count – 1 do
 case Results[i].getItemType of
 isc_info_svc_stdin:
 ReqLength := Results[i].AsInteger;
 isc_info_svc_line:
 writeln(Results[i].AsString);
 end;
 until (ReqLength = 0) ;
 writeln('Local Restore Complete');

80

 Working with Services

 except on E: Exception do
 begin
 writeln('Restore Service Error: ',E.Message);
 bakfile.free;
 end;
 end;
 bakfile.free;
end;

81

 Deployment Guidelines

13
Deployment Guidelines

The fbintf package is compiled into your application and does not itself require any special
procedures for deployment on operational systems. However, it does depend on the availability of
the Firebird Client library or the Firebird embedded server. This chapter provides guidelines on how
to distribute Firebird with your application. This necessarily differs between platforms, and between
Firebird Versions.

13.1 Deployment on Windows

Probably the simplest approach is just to require the installation of Firebird from the distribution
package provided on http://www.firebirdsql.org. Indeed, this is the recommended approach for a
development system. However, this can be simplified and use of an embedded server requires
special consideration.

13.1.1 Firebird 2.5 and Earlier

13.1.1.1 Firebird Client Only

This is the simplest case where your application will be running on a client system accessing a
database on a remote server. In this case, all you need to do is to install, in the same folder as your
application is installed, the following Firebird files:

• fbclient.dll
• firebird.msg
• firebird.conf

These are typically found in the “C:\Program Files\Firebird_2_x” folder and its “bin” subfolder (when
installing from the standard Firebird distribution). Note: the three files must be in the same folder as
the application executable if fbintf is to find them. The firebird.conf should be unmodifed and as
originally distributed.

83

http://www.firebirdsql.org/

Firebird Pascal API (fbIntf) Guide

The advantages of this deployment are that your application distributable is minimised and avoids
the stealth upgrade problem should the Firebird installation be upgraded unexpectedly and to an
incompatible version.

13.1.1.2 The Embedded Firebird Server

If your application is a Personal Database Application. That is, the database resides on the same
system as your application, it is single user, intended to be accessible only to its owner, and a
separate database login is seen as unnecessary, then the Firebird embedded server should be
used when the application is deployed.

The Firebird embedded server may be downloaded from http://www.firebirdsql.org as a single zip
archive. The contents of this archive should be installed in the same folder as your application
executable. fbintf will then automatically find and load the embedded Firebird Server.

13.1.2 Firebird 3.0 and Later

Firebird 3.0 has introduced the concept of “plugins”. Plugins can determine various capabilities
and, in particular, whether an installation is client only or includes the embedded server. There is
no separate distributable for the Firebird Embedded Server.

13.1.2.1 Firebird Client Only

As with Firebird 2.5 and earlier, the same basic files are required, and copied from the Firebird
distribution zip to your application's installation folder:

• fbclient.dll
• firebird.msg
• firebird.conf

However, the firebird.conf file will need to be edited to reflect the plugins provided. In a minimal
configuration, the “Providers” parameter line will need to be edited to ensure that the “engine12”
plugin is removed i.e.

Providers = Remote,Loopback

The AuthClient parameter line should also reflect the authentication plugins installed. If the server
is known to be Firebird 3, then this can be reduced to:

AuthClient = Srp

Finally, subfolder should be created for your application install folder and called “plugins” as a
mimimum, this should contain the “srp.dll” file copied from the Firebird distribution zip.

13.1.2.2 Firebird Embedded Server

If your application is a Personal Database Application. That is, the database resides on the same
system as your application, it is single user, intended to be accessible only to its owner, and a
separate database login is seen as unnecessary, then the Firebird embedded server should be
used when the application is deployed.

In Firebird 3.0, the key difference is that, in addition to what has been described above for a client
installation, the “engine12.dll” should also be copied to the “plugins” subfolder and the Providers
Parameter line should be:

84

http://www.firebirdsql.org/

 Deployment Guidelines

Providers = Remote,Engine12,Loopback

However, for a working installation, additional files will be required from the Firebird Distribution zip.

• All “.conf”, “.dat” and “.dll” files should be copied from the top level zip folder to your
application's installation folder.

• “udr_engine.conf” and “udr_engine.dll” should be copied from the “plugins” folder in the
Firebird Distribution zip to the “plugins” subfolder in your application's installation folder.

• The “intl” and “udf” folders in the Firebird Distribution zip should be copied to your
application's installation folder.

13.2 Deployment on Linux

As with Windows, probably the simplest approach is just to require the installation of Firebird from
the distribution package provided on http://www.firebirdsql.org. However, Firebird usually comes as
a package and as part of your Linux Distribution and use of these packages is the recommended
approach.

13.2.1 Firebird 2.5 and Earlier

13.2.1.1 Firebird Client only

Your application installation should require the installation of the libfbclient2 package (debian) or
the libfbclient.so.2 rpm (Fedora).

13.2.1.2 Firebird Embedded Server

Your application installation should require the installation of the libfbembed2.5 package (debian)
or the firebird-libfbembed rpm (Fedora).

13.2.2 Firebird 3.0 and Later

13.2.2.1 Firebird Client Only

Your application installation should require the installation of the libfbclient2 package (debian) or
the libfbclient2 rpm (Fedora).

13.2.2.2 Firebird Embedded Server

Your application installation should require the installation of the firebird3.0-server-core package
(debian) or the firebird-3.0.1 rpm or later (Fedora).

Note that under Debian, the full server is not installed as this additionally requires the firebird3.0-
server package.

85

http://www.firebirdsql.org/

Firebird Pascal API (fbIntf) Guide

86

 Deployment Guidelines

Appendix A.Parameter Blocks
Many of the Firebird API calls require the use of parameter blocks in order to pass the various
parameters and options that the user may set. These include:

• The Database Parameter Block (DPB)
• The Transaction Parameter Block (TPB)
• The Service Parameter Block (SPB)
• The Service Request Block (SRB)
• The Service Query Parameter Block (SQRB)
• The Blob Parameter Block (BPB).

Each has a slightly different format with, for example, variations in the way that integers and strings
are encoded, and with no obvious pattern. The fbintf aims to hide these differences and to present
a standard approach to the user.

In the fbintf, parameter blocks are managed opaquely through an interface. An API call is provided
to provide an interface to an initially empty parameter block and it is then possible to add
parameters to the block and where necessary give a parameter a value. The original symbolic
constants defined in the InterBase 6.0 API Guide are used when adding a parameter to a
parameter block. In Firebird, each parameter is said to be encoded as a “clumplet”.

It is possible to enumerate all parameters in a block or to find a parameter by its symbolic constant.
The current value of a parameter can also be read.

Given the variations in encoding, each type of parameter block has its own strongly typed
interface, whilst providing the same functions except for the return types. A generic is used to
define the basic interface which is then specialized for each parameter block. However, in order to
improve the readability of the interface, each parameter block interface described in this document
is presented in its expanded form.

The Parameter Block Interface

The Database Parameter Block (DPB) is used here as an example and is defined as:

IDPB = interface
 function getCount: integer;
 function Add(ParamType: byte): IDPBItem;
 function getItems(index: integer): IDPBItem;
 function Find(ParamType: byte): IDPBItem;
 procedure Printbuf;
 property Count: integer read getCount;
 property Items[index: integer]: IDPBItem read getItems; default;
end;

• The getCount method returns the number of items in the block.
• The Add method adds a new parameter item and returns an interface to it.

87

Firebird Pascal API (fbIntf) Guide

• The getItems method accesses and returns an interface to a parameter by position (in the
order the parameters are added.

• The Find method returns an interface to a parameter by parameter type and returns nil if
the requested parameter is not found.

• PrintBuf is a debugging aid that formats and prints to stdout (using writelns) the output
buffer as hex bytes.

The interface returned to a parameter block item is also strongly typed and is different for each
parameter block. The IDPBItem interface is defined as:

IDPBItem = interface(IParameterBlockItem) end;

That is it's a simple subclass of the generic IParameterBlockItem interface.

The IParameterBlockItem Interface

This is the ancestor for all parameter block item interfaces as is defined as:

IParameterBlockItem = interface
 function getParamType: byte;
 function getAsInteger: integer;
 function getAsString: AnsiString;
 function getAsByte: byte;
 procedure setAsString(aValue: AnsiString);
 procedure setAsByte(aValue: byte);
 procedure SetAsInteger(aValue: integer);
 property AsString: AnsiString read getAsString write setAsString;
 property AsByte: byte read getAsByte write setAsByte;
 property AsInteger: integer read getAsInteger write SetAsInteger;
end;

The interface's methods should be intuitively understood from their names.

• The getParamType method returns the value of the symbolic constant used to “add” the
parameter.

• There are “getters” and “setters” for integer, byte and string values, as well as
corresponding properties.

A subclass, such as IDPBItem allows the values of the parameter to be read and written. Note that
different value types are appropriate for different parameter types, although all parameter values
can be read as strings. The InterBase 6.0 API Guide defines the value types for each parameter
type, or even whether or not a value is necessary. The following table identifies the encoding used
for each interface.

Interface Integer Encoding String Encoding Byte Encoding

IDPB No length bytes, (four
bytes containing the
integer value (LSB first)

Max string length 255
bytes. Encoded as one
length byte plus variable
number of character
bytes

One length byte (always
set to one), plus one byte
containing the value.

ITPB Not used Max string length 255
bytes. Encoded as one

Not used

88

 Deployment Guidelines

Interface Integer Encoding String Encoding Byte Encoding

length byte plus variable
number of character
bytes

ISPB Not used Max string length 255
bytes. Encoded as one
length byte plus variable
number of character
bytes

Not used

ISQRB Two length bytes
(always set to four), plus
four bytes containing
the integer value (LSB
first)

Max string length 65535
bytes. Encoded as two
length bytes plus
variable number of
character bytes

Not used

ISRB No length bytes, (four
bytes containing the
integer value (LSB first)

Max string length 65535
bytes. Encoded as two
length bytes plus
variable number of
character bytes

No length byte. Single
byte value.

IBPB One length byte (always
set to four), plus four
bytes containing the
integer value (LSB first)

Not used Not used

Example

var MyDPB: IDPB;
begin
 MyDPB := FirebirdAPI.AllocateDPB;
 MyDPB.Add(isc_dpb_user_name).AsString := 'SYSDBA';
 MyDPB.Add(isc_dpb_password).AsString := 'masterkey';
 MyDPB.Add(isc_dpb_lc_ctype).AsString := 'UTF8';
 MyDPB.Add(isc_dpb_set_db_SQL_dialect).AsByte := 3;

is a typical example of the use of IDPB to populate a DPB prior to attaching to the database. Note
that the parameter to the Add method is one of the DPB symbolic constants defined by the Firebird
API.

89

Firebird Pascal API (fbIntf) Guide

The following provides an example of enumerating a DPB to print out each parameter's value:

procedure TTestBase.PrintDPB(MyDPB: IDPB);
var i: integer;
begin
 writeln('DPB');
 writeln('Count = ', MyDPB.getCount);
 for i := 0 to MyDPB.getCount - 1 do
 writeln(MyDPB[i].getParamType,' = ', MyDPB[i].AsString);
 writeln;
end;

90

 Deployment Guidelines

Appendix B. Example Parsing of the
Service Response Block
Note: Forward declarations omitted for clarity.

function WriteServiceQueryResult(QueryResult: IServiceQueryResults): boolean;
var i: integer;
 line: AnsiString;
begin
 Result := true;
 for i := 0 to QueryResult.GetCount - 1 do
 with QueryResult[i] do
 case getItemType of
 isc_info_svc_version:
 writeln('Service Manager Version = ',getAsInteger);
 isc_info_svc_server_version:
 writeln('Server Version = ',getAsString);
 isc_info_svc_implementation:
 writeln('Implementation = ',getAsString);
 isc_info_svc_get_license:
 writeLicence(QueryResult[i]);
 isc_info_svc_get_license_mask:
 writeln('Licence Mask = ',getAsInteger);
 isc_info_svc_capabilities:
 writeln('Capabilities = ',getAsInteger);
 isc_info_svc_get_config:
 WriteConfig(QueryResult[i]);
 isc_info_svc_get_env:
 writeln('Root Directory = ',getAsString);
 isc_info_svc_get_env_lock:
 writeln('Lock Directory = ',getAsString);
 isc_info_svc_get_env_msg:
 writeln('Message File = ',getAsString);
 isc_info_svc_user_dbpath:
 writeln('Security File = ',getAsString);
 isc_info_svc_get_licensed_users:
 writeln('Max Licenced Users = ',getAsInteger);
 isc_info_svc_get_users:
 WriteUsers(QueryResult[i]);
 isc_info_svc_svr_db_info:
 WriteDBAttachments(QueryResult[i]);
 isc_info_svc_line:
 begin
 line := getAsString;
 writeln(line);
 Result := line <> '';
 end;
 isc_info_svc_running:
 writeln('Is Running = ',getAsInteger);
 isc_info_svc_limbo_trans:
 WriteLimboTransactions(QueryResult[i]);
 isc_info_svc_to_eof,
 isc_info_svc_timeout,
 isc_info_truncated,

91

Firebird Pascal API (fbIntf) Guide

 isc_info_data_not_ready,
 isc_info_svc_stdin:
 {ignore};
 else
 writeln('Unknown Service Response Item ', getItemType);
 end;
 writeln;
end;

procedure WriteDBAttachments(att: IServiceQueryResultItem);
var i: integer;
begin
 writeln('DB Attachments');
 for i := 0 to att.getCount - 1 do
 with att[i] do
 case getItemType of
 isc_spb_num_att:
 writeln('No. of Attachments = ',getAsInteger);
 isc_spb_num_db:
 writeln('Databases In Use = ',getAsInteger);
 isc_spb_dbname:
 writeln('DB Name = ',getAsString);
 end;
end;

procedure WriteLimboTransactions(limbo: IServiceQueryResultItem);
var i: integer;
begin
 writeln('Limbo Transactions');
 for i := 0 to limbo.getCount - 1 do
 with limbo[i] do
 case getItemType of
 isc_spb_single_tra_id:
 writeln('Single DB Transaction = ',getAsInteger);
 isc_spb_multi_tra_id:
 writeln('Multi DB Transaction = ',getAsInteger);
 isc_spb_tra_host_site:
 writeln('Host Name = ',getAsString);
 isc_spb_tra_advise:
 writeln('Resolution Advisory = ',getAsInteger);
 isc_spb_tra_remote_site:
 writeln('Server Name = ',getAsString);
 isc_spb_tra_db_path:
 writeln('DB Primary File Name = ',getAsString);
 isc_spb_tra_state:
 begin
 write('State = ');
 case getAsInteger of
 isc_spb_tra_state_limbo:
 writeln('limbo');
 isc_spb_tra_state_commit:
 writeln('commit');
 isc_spb_tra_state_rollback:
 writeln('rollback');
 isc_spb_tra_state_unknown:
 writeln('Unknown');
 end;
 end;
 end;
end;

procedure writeLicence(Item: IServiceQueryResultItem);
var i: integer;
begin
 for i := 0 to Item.getCount - 1 do
 with Item[i] do
 case getItemType of

92

 Deployment Guidelines

 isc_spb_lic_id:
 writeln('Licence ID = ',GetAsString);
 isc_spb_lic_key:
 writeln('Licence Key = ',GetAsString);
 end;
end;

procedure WriteConfig(config: IServiceQueryResultItem);
var i: integer;
begin
 writeln('Firebird Configuration File');
 for i := 0 to config.getCount - 1 do
 writeln('Key = ',config.getItemType,', Value = ',config.getAsInteger);
 writeln;
end;

procedure WriteUsers(users: IServiceQueryResultItem);
var i: integer;
begin
 writeln('Sec. Database User');
 for i := 0 to users.getCount - 1 do
 with users[i] do
 case getItemType of
 isc_spb_sec_username:
 writeln('User Name = ',getAsString);
 isc_spb_sec_firstname:
 writeln('First Name = ',getAsString);
 isc_spb_sec_middlename:
 writeln('Middle Name = ',getAsString);
 isc_spb_sec_lastname:
 writeln('Last Name = ',getAsString);
 isc_spb_sec_userid:
 writeln('User ID = ',getAsInteger);
 isc_spb_sec_groupid:
 writeln('Group ID = ',getAsInteger);
 else
 writeln('Unknown user info ', getItemType);
 end;
 writeln;
end;

93

	1 Introduction
	1.1 References
	1.2 Change History
	1.2.1 Version 1.1
	1.2.2 Version 1.2

	2 Installation and Preparation for Use
	2.1 Installation under Lazarus
	2.2 Installation under FPC
	2.3 Installation under Delphi
	2.4 Installing Firebird
	2.5 Which Firebird API?

	3 Programming with the Firebird Pascal API
	3.1 Using the API in your Project
	3.2 Accessing the API
	3.3 Locating the Firebird Client Library
	3.3.1 Under Linux
	3.3.2 Under Windows
	3.3.3 Under Darwin (OSX)
	3.3.4 Overriding the Default Library Name
	3.3.4.1 The FBLIB Environment Variable
	3.3.4.2 The OnGetLibraryName Event Handler

	3.4 API Version Number
	3.5 Reference

	4 Working with Databases
	4.1 The Database Parameter Block (DPB)
	4.1.1 Reference

	4.2 Creating a New Database
	4.3 Attaching to an Existing Database
	4.4 Controlling access to the DPB Password
	4.5 Disconnecting
	4.6 Reconnecting
	4.7 Dropping a Database
	4.8 Getting Database Information
	4.9 Database Activity Monitor
	4.10 Attaching to a Database using the Embedded Server
	4.11 Reference

	5 Working with Transactions
	5.1 The Transaction Parameter Block (TPB)
	5.2 Starting a Transaction
	5.3 Starting a Transaction on Multiple Databases
	5.4 Committing a Transaction
	5.5 Two Phase Commit
	5.6 Transaction Rollback
	5.7 Restarting a Transaction
	5.8 Transaction Activity Monitor
	5.9 Reference

	6 Working with Dynamic SQL
	6.1 Dynamic SQL and the Firebird Pascal API
	6.1.1 Named Parameters
	6.1.2 Column Names

	6.2 SQL Statement with no input or output
	6.3 Metadata
	6.3.1 Input Parameter Metadata
	6.3.2 Output Metadata

	6.4 SQL Statements with input parameters only
	6.4.1 The IAttachment.ExecuteSQL method

	6.5 SQL Statements with Output
	6.6 Query Statements
	6.7 Simplified Queries
	6.8 Performance Optimisation
	6.9 Performance Statistics
	6.10 Reference

	7 Working with Blob Data
	7.1 Blob MetaData
	7.1.1 Output Metadata
	7.1.2 Input Metadata

	7.2 The IBlob Interface
	7.2.1 IBlob Reference

	7.3 Reading Blob Data
	7.4 Creating or Modifying a Blob
	7.5 Removing a Blob
	7.6 Using Blob Filters

	8 Working with Array Data
	8.1 Array Metadata
	8.2 The IArray Interface
	8.3 Reading Array Data
	8.4 Creating or Modifying an Array
	8.5 Reducing Array Bounds
	8.6 Removing an Array
	8.7 Event Handlers

	9 Working with Character Sets
	9.1 Firebird Character Sets
	9.2 The Database Connection and the Default Character Set
	9.3 Code Pages
	9.4 Transliteration Rules
	9.5 Text Blob Handling

	10 Handling Error Conditions
	10.1 Exceptional Error Handling Cases
	10.2 The IStatus Interface

	11 Working with Events
	11.1 The IEvents Interface
	11.2 Asynchronous Event Handling
	11.3 Synchronous Event Handling

	12 Working with Services
	12.1 The Service Parameter Block (SPB)
	12.2 Attaching to the Service Manager
	12.2.1 IServiceManager Reference

	12.3 Starting a Service
	12.3.1 The Service Request Block (SRB)
	12.3.2 List of Services

	12.4 Querying a Service
	12.4.1 The Service Query Parameter Block (SQRB)
	12.4.2 The Service Request Block (SRB)
	12.4.2.1 Running Services
	12.4.2.2 Information Requests
	12.4.2.3 Setting Properties

	12.4.3 The Query Response

	12.5 Detaching from the Service Manager
	12.6 Backup and Restore Services
	12.6.1 Backup and Restore on the Server
	12.6.2 Backup and Restore using a File on the Client System

	13 Deployment Guidelines
	13.1 Deployment on Windows
	13.1.1 Firebird 2.5 and Earlier
	13.1.1.1 Firebird Client Only
	13.1.1.2 The Embedded Firebird Server

	13.1.2 Firebird 3.0 and Later
	13.1.2.1 Firebird Client Only
	13.1.2.2 Firebird Embedded Server

	13.2 Deployment on Linux
	13.2.1 Firebird 2.5 and Earlier
	13.2.1.1 Firebird Client only
	13.2.1.2 Firebird Embedded Server

	13.2.2 Firebird 3.0 and Later
	13.2.2.1 Firebird Client Only
	13.2.2.2 Firebird Embedded Server

