IBX for
Lazarus
User Guide

Issue 1.4,
25 January 2018

McCallum Whyman Associates Ltd

EMail: info@ mccallumwhyman.com, http://www.mccallumwhyman.com

Registered in England Registration No. 2624328

COPYRIGHT

The copyright in this work is vested in McCallum Whyman
Associates Ltd. The contents of the document may be freely
distributed and copied provided the source is correctly
identified as this document.

© Copyright McCallum Whyman Associates Ltd (2016)
trading as MWA Software.

Disclaimer

Although our best efforts have been made to ensure that the
information contained within is up-to-date and accurate, no
warranty whatsover is offered as to its correctness and readers
are responsible for ensuring through testing or any other
appropriate procedures that the information provided is correct
and appropriate for the purpose for which it is used.

CONTENTS
1 INTRODUCTION

1

1.1 REFERENCES. ..1tttiieeetuteeeiesuureeseassnseeeeessssseeesssssssssessssssssseesssssssasesssssssssessssssssssesssssssnseeses
1.2 CHANGE HISTORY...uttiiiieiitiiieeieeiiiete e e eeeitteeeeeette e e e s e abtaeeee s artaseeeeessasaessessssaneessennssasseaannn
O A =3 4 (o) s I S USSP PSURRRt
1.2.2 VBISION 1.2....cuueeeeeeeeeeeeeee ettt e eecctee e e e e ettae e e e e e eaaaae e se e aataeeeeesnsaeaeeseesaneeeeeennnrens
1.2.3 VBISION 1.3....eeeeeieeeeeeeeeee ettt ee ettt e e e e etae e e e e e taa e e e seeaataee e e e ssaeaeeseensaneeeesennnrens
A 4 o 1 SRR
T1.2.5 VBISION 1.5....cueiieeiieecieeeeieeeecteeecte e et e e aee e e tte e s sateeseaaeesssteesesssaessaaeennseasnnseesanseens

2 INSTALLATION AND PREPARATION FOR USE

...................................... 2
...................................... 2
...................................... 2
...................................... 2
...................................... 2
...................................... 3
...................................... 3

2.1 MINIMUM REQUIREMENTS....ccecuttteeeieeurreeesesiureeeeesssnreeesesssssseeessssssesesssssssneessssssnssessesssnnnns
2.2 INSTALLATION UNDER LLAZARUS.....uuutiiiiiieiciiieeeeeeitteeeeeecitreeesesataeeesesnantasessessnssssesssensssssasans
AR I ©70)N(-To) ALY (0] 0) o 1= 3 PRSP
2.4 INSTALLING FIREBIRD.....ccciiieiiiriieeieeiirtieeeeeiiteeeeeeeereeeeeeeesaaeeeeseaseseeeeesssseeeesensnsaseesesnnssneens
2.5 UPGRADING FROM EARLIER VERSIONS.....uvvteeieeiuiieeeeeiirreeeeeeeirsreeeeeesinseeeseesssssesseessssessessannnes
2.6 NEW FEATURES WITH IBX2....ciiiiiiiiiiieieeireee ettt eeettre e e e eeeaareeeeeeenaneeeeesennaneeeeeennnnenees
2.7 UNINSTALLING IBX....iiiiiiiiiiiiecieeeeite ettt e ettt e et e st e e e tee e s sae s eaaeessssaeessnseesnneeensseesnnnns

3 AN INTRODUCTION TO DATABASES, SQL AND FIREBIRD

3.1 WHAT IS A DATABASE?...ceeiuitiiiiieeeiteeeiteeeiteeeiee e et e sieee s st e e esteesnreessaseessseeesnneesnnseenan
3.1.1 IN the BEGINNING.....c.ccccvuerereeireisieeiieieiesieesiteesteessaeesseesssessseessessseesssessseesssesssassnses
3.1.2 The Arrival of Random ACCeSS StOTAQE...........cceeveereevesreeeesreeeesseeisessessessesssensens
3.1.3 TNAGXES...cccuvveeereeieeerieeiteeeiteecteeete et estteeteessaeete e beesbeaseesstasseasssessaesssesssaeansasnseens
3.1.4 Multiple Indexes and DAtASELS.............ccoereeerersuesuersieniiesieniesiesteseeseeseestessessenaes
3.1.5 The Need for MiddleWare...............cccccueeueeeeeeeieeniieiieneseenesseesesssesesssessesssesssesens
3.1.6 Enter the RDBMS..........ccooiiiiiririinienieteteteeeteeeie et saesaesaesaeseeneeneene
3.1.7 MUIEI-USET ACCESS......oeevesreeeresieeiesseeeesseestessesstessesssesseessesseessesssessesssessesssessesssensesnes

3.2 THE STRUCTURED QUERY LANGUAGE (SQL)..cttettiriiinienieiiienieetesreeieesiesseeeseesieesae e

3.3 THE FIREBIRD RDBIMS ..ottt ettt st et ssee e e be e e

3.4 AND THEN THERE WAS IBX ..ottt ettt ettt et

...................................... 9

4 IBX OVERVIEW

4.1 CoNVERSION FROM DELPHI IBX.....coiiiiiiiiiiiceiieee ettt et eeeteaee e e e avaa e e e
4.2 TBX IN CONTEXT . uveeeeueeeesrreeasureeeaseesasssesessseessssesssssssessssssssssessssssssssssesssssesssssssessssesssseesns
4.3 COMPONENT OVERVIEW. .eccuuteeeevreeesureeeanseeessseeeassseessssesssssssessseesssssssssssssssssessssssesssssssssssessnns
4.4 DATABASES AND TRANSACTIONS. 1eeeeeecurrreeeeesrrreeeessasseneesssssssessssssssssessessssssessssssssssssssssssanees
4.5 DIATASETS.ceeiieeeurreeeeeeserrreeeeaessreeeeesssssteesessssssseeesssssssseesssssssseesssssssssseesssssssssessssssssseessensnnes
4.5.1 Datasets and TraNSACLIONS...........cccueeeeveeeeieeeeiieeeiieeeeeiaeeeeireeeesseseessseeesssesessesesnses
4.5.2 Single TabIe DAtASELS..........cccueeeueerierieesieriiresteesieestesssesssesssessseessseesseessesssassses
4.5.3 SQL Defined DALASELS........c.ceceeueeueeeeieirieeieeeesiesiessessessensessenseseesesessesessessessessenss
4.6 EXAMPLES. ..eeeiiieeititeeeeeeittreeeeeeitteeeeeeesraeeeeaaesaseaeseeasssseeesasssassseesassteseesssassaseesssnnsssseessnnnes

5 THE DATABASE ACCESS COMPONENTS

5.1 TIBIDATABASE....eteteuteeeieeeeiitteseiteesieeesenetesereeesseeesmeeesenreesenseeesareeesanseesensaessareeesnnsnesannes
5.1.1.1 Parameter KeYWOTITS.......cooueriiriereerienieneeieeieneesieeiestesteeseeessesssesseensesssesseessessessaenne
5.1.2 HighliGRted EVENLS..........ccceeeueeeeeesieeeesieeeesieetesseessessessessesssessesssessesssessesssesssesses
5.1.3 Connecting to @ DAtADASE...............cccueeeueeieeriieeiieniieeseesieessesisessssessseesseessseesseesnes
5.1.4 Database DISCONMECL...........ccceeeueriieriuersveriieeseesisesssesisessseessseesseesssesssessssessssesssesas
5.1.5 Creating @ NeW DAtADASE...............coeeeueveeiuenieiieeieiietesieetesieete st ste st sae st e ssesaean
5.1.6 Dropping @ DAtADASE............cc.ccceeieiueriiiinieniintenestesieestesieestesieeste st see st eseesieens
5.1.7 Using the AttaChMeNt INLET ACE.cveeveereecieeereeieneesieeeerieeeesaeseesaeseesseesenseens
5.1.8 Using the AllowStreamConnected PrOPerty.........c.cceeeevuereeceenerieesersrenesseeneeneens
5.2 TIBTRANSACTION.ttteutteeauteeaaureeratteeaseeeassteesaseeeasnseeesssteesseeessseesaseessseeessnseessseessnseesns
5.2.1 Highlighted Properties...........c.cceccueeeeeeeserseeeeseeeessesssessesssessesssessesssessesssessesssessees
5.2.2 EVOIILS...ciieuieeeeteieetteeete ettt ettt st e sttt e s st e e st e st e e s be e e e bt e e e abaessabee e s baeennee
5.2.3 Transactions and DAtaDASES............c..cecuereeeriueeiieesiieenieeniieeseessiesseessseessesssessasnnns
5.2.4 Starting @ TrANSACLION.........cc.ceevueeeeeeseeieeereteete ettt ertessreeeree s bt e saeesseesaeeeeens
5.2.5 TranSACtiON PATAMELETS.........cceecuueieieeeesiieeieiieeesteessieeesstessssseessssessssseesssssesssseesns
5.2.6 The Transaction EQItOr...........ccccoceereeenieneenirnentnteeneneeesesieseeseesseseestesaeseeeeeeneene
5.2.7 CloSiNgG @ TraNSACHION.........cceecueeiecieeierieeiesieetesieestesseestesseesessesssessessesseessesseensens

5.2.8 Retaining Transaction State After CIOSUTE.............cceeveeueeeeseeieireeeesiessesseseessessessesssessesssessesssessessssessssees 34

5.3 TIBEVENT ...ttt ettt sttt ettt ettt e a e st st e st e st e st e e bt e bt e s bt e beesaae e bt e smtessseeentesanaeeesnnneeesnnnee 34
5.3.1 HiGRIIGREEd PrOPerties.........ccceecuerueesieneeieeiteiieeitesteeit et eiteste st este st estestesae st e sbesbe s bt sabesbteabesstebesseeseesbeean 34
5.3.2 EVORIIS ..ottt e a e s aa e 34
5.3.3 USING EVENLS......ccutotiiiiiiniiiiieitettitete ettt ettt et ettt ae st e ae st e ae st e a e st beemnesaneeenneeenneesanneean 35

5.4 TIBSQL...n ettt ettt st ettt st e et e st e e bt e et e e e bt e e bt e b et s ab e e bt e e a bt e bt e e ae e e b e e e abe e bt e sabeeesenaeeeseanee 35
5.4.1 Highlighted PUDIISREd PrOPeTties............cceeueeeeveeseeeesieeeesseseesseseessesssessesssessesssessesssessesssessssssessesssassnsees 35
5.4.2 USING TIBSQL.........coteiiiriiiieieiieteniteteset ettt sttt ettt ettt ettt sa e st e st s e e saeeseesaeemnesneemnesneeanesneeesmneens 36

5.4.2.1 EXeCuting @ StOTed PrOCEAUIE......c..cevvieiierietieientesterteete st et esteestesteesteesesseessesssesssesseessesssesssesseessesssesssensessnseeesns 36
5.4.2.2 A Stored Procedure that TEtUINIS OULPUL.......ccueerteriertieriirierteeteeteeteeee st ee e sitesseeste st esseesbe e st smeesseesseesesaeesseesesnnens 36
5.4.2.3 EXeCUting @ SEleCt STAEITIENL.cc.eeteieieieietetetet et et ettt e st et e stestesbe st e sbesbesbesbesbeebesae st e ebesaeebeebesbeebeebeeneeseesanes 37
5.4.3 The TIBSQL SQL Property EQItOr......cc.ucceeueiieieniietentesteeitestesute e sitesee st este st esbesstesseestesseeseeesaeeesseesnmeeens 38

6 THE DATASET COMPONENTS
6.1 IB X DIATASETS cuutteeeutreeereeeesuteessteeeaueeeassseesssseesssseessseeeasssesssssessssseesasseessssesssssessasseesssseesssssesssssesessseesssssssssssseeees
6.2 COMMON CONCEPTS. ..ceeeuurreraureeraueeeraseeesanreesaseesaseeessnsessaseeessnseesssseesssesessnseesanseessseessssseesanseesssessssseeessnseessnseesansenes
6.2.1 COMIMON PTOPCILIES.uveeeeeeueireeeeiteeiieeiteeteesitestesettesseesteesbe s st esatesseesstesabtesatesabeesstessseesstessessseesaseesssenaee
6.2.2 COMMON EVENLS.......ccooiiriiiiiiiiiiteete ettt sttt ettt st st saae s bt e st e e bt e sa e s st s saesabeesnaesaneessnesnnes
6.2.3 EXCePtion HANAIING........c.occeeeeeiieeeeieeieseetesteestesteetesseesesseessesseessesseessessesssessesssesssessesssessesssessesssessesssessenns
6.2.4 Character SetS ANd COAE PAGES.........ccccceeueiersiesiieienieeiesiteteeit et st este st e ste st e sbe st esbe st e be st esbeeatesseetesaeens
6.3 TIB T ABLE..cceutttieiieeeiteeeetteeette e et e e ettt e sttt e e s bt e essteesbtee e sbeeesasaeesasteeasstee e abeesaasaeesasteesastaesnbeeensbaeeesssssssnsnaaaaeeens
6.3.1 HiGhligRted PrOPETLIes......c..ccuceueeuerieieieieieteteitettee st sttt et tete st et ettt e st et s st sstebesse st e besbesaeneeneenseenseens
6.3.2 USING TIBTADIE.........cc.ooveerieiieieiieieeieeiee ettt ettt et sttt e st et esat e be s bt et e e st et e e st e bt eatesaeenseeennteasaseasnsaeens
6.3.2.1 Master/Detail TabIes..........cccririiiiiriiriienereeerer ettt sttt ettt ettt ettt n e e st
6.4 TIBSTOREDPROC. ..c..uteetertterieeniteeteesteste et e s et e steesbeesteesuteesutesatesbtesaseeabaesaseeseesusesstesstesasaesssesasaesasesseaeesnnsaaesann
6.4.1 HighliGRted PrOPEITIES.ccueevereeereerieiteseeestessessesseessesssessesssesseassassesssessesssesseessesssessesssessesssessesssessesssasssees
6.4.2 USING TIBSEOTEAPTOC.......cccveeveereeeiesieesiaeeassesseessessessesssessesssessesssessssssessssssesssessesssessesssessesssessessssesssssssssseens
0.5 TIBQUERY . .uutttttiiiiiieieieeeieeeieieeeeeesesesssararararaeeeerereteeeeeeeteeesesaesessssssssssasssssrsaresesesseeeeseessessesssssssssssssssssssssereseseessssnns
6.5.1 HiGhliGRted PrOPEITIES.ccueeuteiieuieniieieneeeie sttt sttt et et ettt e s bt et e s et et e sat e bt satesbesatesbesabenbeeatenseeseesabeean
6.5.2 USING TIBQUETY.......ccuteiiuiiieriteitirteetteteeree et sat e st e sae st eae st e st s s e st s s e sst e s e s st eae s st esnesaseaesnneessnaeenneens
6.5.3 The Select SQL PropPerty EQItOrcooeeueririienieieeetesieetesieete st ettt te st et e satesae st essesatessestessesnsessaesneens
6.5.4 ParameteriSed QUETIES.coeueeeeeeeeeeeeeeeieeeeeieeeeeseeeesseeeeseeessseseessssssasesesassessesssssessessessssssesesesssenssssnnnnes
6.6 UPDATE OBIECTS. . eeuteeuteerutenternrteritersstesiseesseessessstesssessseesssessseessessseesssessseesssessstesssessseesssessseessessseesssessseesssessseeesss
6.6.1 TIBUPDAAEESQL.......ceeueeieieieeetetet ettt ettt ettt et ettt et a e bt e bt s bt sb e b e s b e st et e s et et et et ententenesaeebeebeens
6.6.1.1 Highlighted PrODEITIES.c.eiitiiiieiieieeteetee ettt sttt st b e e b et e b ettt s bt sbe et e s aaesmeesmreeenas
6.6.1.2 SQL Syntax for Update Object Queries
6.6.1.3 OLD and INEW Parameters..........c.cecueeuterrerrueeiereenieetestesteestestesseesseesesssesseessesssesueessessesnsesseessesssesssessesssesssesseesns
6.6.1.4 Insert and Update Returning CLAUSES.........ccoutirterriirieriiiieteritesteete sttt ettt se et sate s st et st st e sbeesbe st e saeesbeeeenn
6.6.1.5 Delete RetUITING CLAUSES.ccuerteruiirierienienieeteetesttesteetestesteetestesiaesseesesseesseessesssesssessesnsesssessasssesnsesssesseensesssens
6.6.1.6 Using Stored Procedures for Insert, Update oF Delete..........cccocueeriiiiieiirnieieieieietereeeeereeeeere e e 56
6.6.2 TIBUPDAQLE.coeeeeeeeeeeeieeieeieetesieesteseeste st essesstessesssesseentasseensesssessesssessesssessesnsessesnsensesnsensesnsesssensesssassnseen 56
6.6.2.1 Highlighted PrODEITIES.ccuvirteriieierieeitieiestesttestestesteesteetesteesteebeessesseessesssesssensesssesssesseensesnsesssesseesessenseesnsseesnns 57
B.6.3 GOINETALOTS.c.ueeeeiiieiiitieeeecite ettt ettt st st bt e st s ae e s et e s e e s bt s ba e sabe s bt e s bt e s st e s bt e sstesennaaeessnnneeesnnnnes 57
6.6.4 UDAAEING DAEASELS.....c.eeeeeeeereeeeeeteeeetesie ettt ettt ettt e b e st et e s at et e saeebesatesbesut e besut e beest e beestenbeeaeenbeeatenaeens 58
6.6.5 AULOMALIC POSLING.....ueieeeieieiieieeiieeeiteeeiite ettt ettt e stte e sttt e s sabeesaabteesabaeessabaesaubaesssbaeeassbaesassaeessbaeeesensssnssnes 59
6.6.6 The ONVAlIAAEPOSE EVENL.........cccoeeueriierierierieeiteneestesttessesstessesstessestessestessesssesssssesasessesseesseessssesssseessseesns 59
6.6.7 CACREA UPAALES.......cuoeeeeeeeeneiesiietesieeteetee et e e st et e st e stesatesae st esse st esbesbesbeeabesstenbeestenteeatentesaseesseeenaseenn 59
6.6.7.1 Cached Updates using OnUpPdateRECOI.cc.coerririeririnenieniieenentee ettt ettt 60
6.6.7.2 The ONUPAAtEEITOT EVENL......cc.ccctiriieiierienieesierieeeesieesteetesseesseessesseessesssesssessesssesssesssesseessesssesseessesssesssesssesssseessns 60
6.6.8 IAENLItY COIUMMS........eccveereeieereeteeteeiteeeesteetessestesteetesseesessaessassaessasssessesssessesssessesssessesssessasssassnsesssseesssseens 61
6.6.9 ROW REfTOSN.....ccveeeeeieeieiieiecteetestte e s e este s e e stesteesae s st essesseessessaessasssessasssasseassasesssesseassessesssesseessessesssensensens 62
6.7 TIB D ATASET.c..eeutetteteteeteet ettt ettt st ettt e s bt et e be et e bt et e bt et e bt et e saeeaeeeatenbesatebesut e beeut e beenbeeabeeenneeenabeeeabaeans 62
6.7.1 HiGhliGRted PrOPEITIES.ccueeuteiieuientieientteie sttt ettt ettt ettt et e s bt et e satetesat e bt satesbesatesbesabenbeeabenbeentaesabeean 63
6.8 DIATASET FIELDS...ceeuteiiteiitiiteeieecteete ettt sttt ettt e st s bt e st e s bt e st e e bt e sat e e st esae e s bt esaeesabeesaseeseesasesseenanraeenen 63
6.8.1 FIOIADESS......cceeuieeeeieeeeeiesieeiestete et e et et st ste st e saeste st et esteste st et estenteneeseeseesesse st e s e sessensensententensensenteneensesnsenns 63
6.8.2 IBX FHEIAS......cueeeuieieeieiieeeeeeteeeeee ettt ettt ettt s e ettt et et ettt et st bt s aesb e e bttt e b e e beenbeenne 64
6.8.2.1 TIBBCDField, TIBSmallintField, TIBIntegerField and TIBLargeIntField..........ccccceevvereenienvieneineecieneeesieeeeenes 64
6.8.2.2 TIBSIIMGFIELA. ...cuteieiiieiieitieieetert ettt sttt e st e st et et e sttesteesbeestesaeesbessse s st assaesseensesssesseensasssesssensesssesssensaensesnns
6.8.2.3 TIBMemoField
6.8.2.4 TIBATTAYTFIRLA.cueiuiinieieteee ettt sttt b e bbb bt e b b e bt e bt bt e bt e bt e bt e bt e bt e bt e st eae e st e st e st e e nseeenbeas

7 IBX SUPPORT COMPONENTS 67
7.1 THE IBX SCRIPT ENGINE....ciiiiiiiiiiiiiiiiieieiittttttitetee et e eeeeeeeeeetetesesssssssssssasssssaeseeeeeesesesseesesesessssssssssssssssssssssnnnnneens 67

iv

7. 1.2 EVOILS: ..ccceeeeeeeeeeeeeiirererereerereeeeseeeeseseeeeeeesesesessssssssssssssssssssassesesesesssesesesessssssssssssssssssssssssesesesseeeseesenenensessnsnnnss
T 1.3 USAQGE....uueeaueeiueiiiieeteeteetee ettt ettt ettt ettt e et s bt s bt bt e st e s st e s bt e e bt e e bt e be e s bt e e ae e s bt e e b b et e e b e e e e ennraeees
T L4 EXQIMPIES......ooueeeiniiieeieeieeteeit ettt ettt et ettt sae et s ae e be st e b e e st e b e e bt et e ea e et e e atesbe et e saeenbesae e besuteeabbeesabeeeane
7.1.4.1 The Script Engine Example
7.1.5 The fbsql Console Mode APPLICALION.............c.ccuecueeeeeeeieieieieeteeiesiesiestestete et eteseesessesseesessessesesseesseesseenaes 71
7.2 THE DATA OUTPUT FORMATTERS......uuvutirtrrrrrereiereeeeeieeeieieseseesesrssssssssesssssssesessssessssesessssesesssssssssssssssssssssesesesssssssnnesees 73
T.2.1 USAQGE...uueeeeeeeiieieeeteeieeete et eeite st e st e st e st e st e s st e s st e st e s bt e sat e s beesabessse e s st e s st e ste s baesatesabaesssseeesannbaeesensaaess 73
7.2.2 PIOPETLIES.eeeeuteeeeiteeeeteeeaiteeeettesette e sttt e s sattesease e e s bt e easteesanbeesaabeeeaasaeesaseaeaasteesaaseeesasteesasteeenasaesanseaaaesesnnn 73
7.3 THE SQL PARSER......cciiiiiiiieeeeieiiiittriteteteeetetereeeeeeeeetesesessesessssssssssssssssssseseseseesessesesessssesssssssssssssesssssssesesesssssssnnnneens 74
A T R N (T30 2o | Y] PR 74
7.3.2 USE WILN IBCONITOIS.......ccooeiueeeeeeieeiieee e eeeteeeeeeeesateeeeeeesareeeeeesaseeeeeessssasseeesassssseessessssssessessssssesssesssssnsssssnnen 75
7.3.3 EXAMPIC.....cueoeeeiieieiieeeeeee ettt ettt st te e st e e sae et e s et e s e satesae st e st st e seense st ensesstenteeatenseentensesntessesnsesseenseens 76
7.3.4 TSeleCtSQLPAISEr REfEIENCE............cccueeeuieerieeieeieniesiestestetesteeeteetesessessessessessensesensessensensesseseesesssesseesssesses 77
7.4 ISQQL IVIONITOR.....uuuuuuuenrurarerereeeseseeeeeeeeeeesesesessesesssssssssssssssssssssesesssssssesasessesssssssssssssssssssssssesesssessssseseseesensssssssnnnsssans 77
7.4.1 TIBISQLIMONILOTccccccceveeeeeeeeirereeeeeeeiveeeeeesesseeseeeasseseeseeessasesseeassssssessesssssssessassssseessesssssseesesssssssssssnsssnssnnn 77
7.4.1.1 Selecting What 10 TNOMITOT.......ccuerterierierientesteesteetesteesteeteseestestesstesseeseessesseesseensesssesseessesssesssensesssesssessaenssasssnnse 77
7.4.1.2 SQL REPOTES. ..cuutiiiiiiiteiite it ettt ettt ettt sere et e e bt e e bt e s bt e s bt e s bt e e bt e e bt e s bt e saneesebeeeabe e e st esantesaneesaneesnmnnneeeeenns 78
7.4.1.3 APPliCAtion IMOMIOTING.eouertirtietiriietieteeieei ettt ettt et et ettt et ettt et et et et et et e benbenbenbesabeesateebaeenbeens 78
T2 EXAIMPIES......oueieieniiieeieeieeteeit ettt ettt ettt et sae st s bt e te s at et e e bt e b e e bt et e ea e et e e at e s bt et e eueebesut e beeuteeabbeesabeeeane 78
7.4.2.1 Integrated MOMIIOTIIE.ceuerveerieeterterteeterteete et et et e st et e st e sae e besate s st e beeabe e st esbe e bt easesbee st enbesatesueenbeeasesnsenbeeenanee 78
7.4.2.2 REMOLE IMONILOTINE.eeeuetieieeiiteiiteeiteeiteertteeteeettesteesabeeeabeesabeesabeesabeesabeesaseesastesaseesaseesasaesaseesaseesnseessseennseenasens 78
7.5 TIBIDATABASEINFO.......uvvvieeiiiitireeeeeeiireeeeeeeeitteeeeeeesseeeeeeessseeeeeeesssseseeeesasteseeessasssssessesssssseseesssssaseesensraseeesensrneeesnns 78
7.5.1 PeT TADIE COUNLS.......cccuveeereerieeieeiteesteecteeeteseteesseesseesseesseesssesasaesssessseassseassaessseassesssessseasssesssesassessessenssens 80
LS T N 1 27 25 @ v ¥-Xes VU URURPRPRON 80
7.6.1 EXract Of BiNATY BIODS..........c.occueeieeieeieiiseecieseectesee e s testeestessesseessessaessessaessssssesseessesssessesssessasssessesssseenns 83
7.6.2 EXITACt Of ATTAY DAUQ.......coueeeeeieieieieeeieetee ettt sttt ettt ettt et et e st e beebe st e st e be s etensentententententeneesene 84
8 USING FIREBIRD BLOBS 87
8.1 BLOB TYPES...uuuuteeeiieeiiiiee e e ettt e e eeettteeeeeectreeeeeesasaeaeeesesbaaaeesasassseeeeeasssaaeseassraaaeeasnssaseeeeassasaessenssnnnsnnnnnnnnnnnnnns 87
B.1.1 TOXE MOAE BIODS.........ccoooeeeeeeeieieeeeeieeeeeeee ettt eeeette e e e sestate e s s essaateesesssasaeeessssssasseessesasteesssssssseeseeseeneees 87
8.1.2 BiNATY BIODS.......ocuoeeuieieeeectieeecteseeteeeesteetee s ee e este st essesstessesstessesssessesssasseessesseessesssansesssensesssensesnsensesnsennsees 88
8.2 STREAM IMODE ACCESS TO BLOBS.....uvtiiiiiiiiiiieeeeiiiteeeeeeeireeeeeeeirteeeeeesiaraeeeeeeestaseeeseesssseeeseesnsessseesassraseesennstareeeeeesees 88
9 USING FIREBIRD ARRAYS 89
9.1 DEFINING AN ARRAY ELEMENT...uuuttitiiitieieieieieieieiieieieseseiesssresereseesssseseseeeeseesessseesesesssssssssssssssssssssesssessessssessnsenasesssssss 89
0.2 TIB ARRAYFIELD....ciiiiiiiiiiieiieceiittttt ettt et ettt e et ettt teeeeseseassssssbaraaaeseseeseseeaeeeesesesessessssssssssssssssssssannnsessssssrannseesees 90
10 USING FIREBIRD SERVICES 91
10.1 FIREBIRD ADMIN COMPONENT O VERVIEW.....cceieeeeriuuunrrrrerereereereeeeeeeeeeeeesesessssssssssssssssssssssssssssesssssssesesessessssnsnesssssssnnns 91
10.2 COMMON SERVICE PROPERTIES. ..uvvvvvevereereereieieieeeieieieeessssisssssssessssseeseseesesseseeeetesessssssssssssssssssssssssssssesssssssssnnseessssssnnne 92
10.3 THE BACKUP SERVICE.....uvviiiieiirreeieeieireeeeeeeeitsreeeeeessseseeeesesssesessesissssessessssssssesssssssssessessssssssessssssssessesasssssssssssnnsnns 93
10.3.1 Server Side BACKUP..........c.ccoueeueeeeeieeieeieetesiestesteetessestessesssessesssesseessesssessasssensesssessesssessesnseessnsessssesssnsesns 93
10.3.2 ClENt SiA@ BACKUP........oeeveereeeeeiieeiesieeitesteesteseesseseessessessesssessesssessesssessesssessssssesssessesssessesssessesssessssessssees 93
10.4 THE RESTORE SERVICE.....uuuuuvurererereeeeereeeeeeeeesesessssesessssssssssssssssssssssesesssssesessssssssssssssssssssssssssssssssesssssesesesssesssssssssnnns 94
J0.4.1 SEIVEE SIA@ RESLOTES.......cccuvveeeieeieeeeeeeieeieeeeeeeesireeeeeesiseeeeeesssstsesessssasssessesstassesssessstasessssssassesessssrreesseeees 94
J0.4.2 ClIeNt SiA@ RESLOTS.......ccccuvveeeeeeeeieeeeeieeiteeeeeeesiteeeeeesisteeeeeesssiaseeessesiasssessessatsssessssssassessssssssssssnsssssnsssssssnns 95
10.5 THE CONFIGURATION SERVICES.......ceeteesesururrurerererereeeeeseseeeeeeesesessssssssssssssssssssssssssssssesssssesesesssssssssssssssssssssssssesssssnnnns 95
10.6 THE SERVER PROPERTIES SERVICE.....ccceeeeiuuuuvururereeeereeeeeeeeeeeeieieiesessssssssssssssssssssssssssesesssseesesesssssssssssssssssssssssssesssssnnnns 96
10.7 THE LLOG SERVICE.....cceesiureeeeeeeitreeeeeeiirereeeessirsseeeeeesisseseeeessssssssessasssssessessssssssesssssssssesessssssssessesssssssssssssssssssssssssnns 96
10.8 THE DATABASE STATISTICS SERVICES.....uvvveeeeeesisrreeeeesisseeeeessssseseeesssssssseesssssssssessessssssessessssssssssessssssssssssssssssessensssssens 97
10.9 THE SECURITY SERVICE.....cceeteeeruurrrrrrererereeeeeseeeeeeeeesesessssesssssssssssssssssssssesesesssssssesesessssssssssssssssssssssssssesesesssesessssssnnnns 97
10.9.1 LiSting Il USET INAIMES.......c.eccveeueeereereesteeeessessessessessesssessesssessesssessesssessesssessesssessesssesssessessesssesssessessssssessns 98
10.9.2 AdAING Q@ UST ...cueeeeeiiieeieeieeieett ettt ettt ettt ettt e be et e s bt et e s bt et e e st et e e st e bt e at e s bt et e sbeebesabeeennteasabeeeasaeans 98
10.9.3 Updating USer DELAILS.........c.cecueeueesuereenierienieetesieete st este sttt stt et sutestesatesaesatesaesbesseebessteabeesaeeesaseeeameeens 99
10.9.4 DeLELING G USETccueeeeeieieteietetetetee sttt sttt st et ettt ettt st be s bt saesb b e sa et et et e e ent et esseesneesmeens 99
10.10 THE VALIDATION SERVICE......ceeeuurrrrurererereeerereeeeeeeeeteseesssssssssssssssssssssssssssesssssseesesessssssssssssssssssssssssssesesesssssseessnnnees 99
10.10.1 DAADASE REPQITccueecveeeeeiieereiieiesieesesestessesssesseesesssessesseessesssessesssessesssessesssesseessesseesssesssssesssseessnsesns 99
10.10.2 Resolving LimbO TraNSACHIONS............ccueeveeuerieerierieesieetessestesseesessessesssesesssessesssessesssessesssessesssessssassnsees 100
11 PERSONAL DATABASES 103
11,1 TIBLOCALD B SUPPORT.....ccvtiiiiiiiiieieieeeeeereiirrtrarereeeeereseseeeeeessesesasessesssssssssssssssssssssesaseseessssesessesesssssssssssssssasssssesens 103

JT. 1.1 PTOPETLICS.ueeeeeianeeeieeeieeesiteete et steesate st et e s te s bt e s besbt e s bt e e st e s st e st e e st e beesabe e seesabeessbeeabeesmbaeeesansaeeesnnren 104

11.1.3 SHAred DAtA DITECLOTY......cccueeueeveeeeeieeeesseseessestessessessessesseessesseessasssessesssessesssessesssessesssesssesssssesssseesssseens 105
11.1.4 DatabaseName, and login parameters MANAGEMENL.............ccceeeerueeierierseereriteneeseeseessessseeesaeeesseesaseeens 105
11.1.5 Database INTIALISALION.ceoueeueesueeieiteeieeiteteett ettt et sttt s et et e bt et e bt et e sbe et e saeenbesatenbesatesseenneeesaseean 106
11.1.6 Saving the CUITENt DALADASE.............c.cccueeueesuerienierieerieritesieeitestessestessesstessessteseestessesstessesnseesssseessseessssesns 106
11.1.7 Restoring the Database from QN AFCRIVE............ccocuecueeieeerceeieesisesestestesiestestestesteste st estesessessessessessessesses 107
11.1.8 Database SChema UPQGTAde...............cceceeueeeeseeeieesieeeesseseessesssessesssesseessesseessesssessesssessesssessesssessessssessssees 107
11.2 LoCAL EMPLOYEEDB EXAMPLE......c.utiitieittiitteniteenteeteesteeteestte e it esitesseesstesabeesatesseesaeesseesstesasassseesaseesssessseeessnnne 109
11.2.1 RUNNING the APPLICALION.cccveeeeeeeeeiesteeciesteeteeeesteeeesteeeessesaessessesseessessaassesssessasssassesssensesessseessseessssenns 109
11.2.2 CONSOLE MOUE.......ceoeeeiieieieeeeeteeeee ettt ettt et ettt et at bt s ae b b e s b e st et e s et et et et e st eate st sueabeebeens 109
12 THE IBX CONTROLS 111
12,1 TTBDYNAMICGRID. ..cceeutteeeureeentieeeiuteeesteeesteeesssteesaseesssteessssteesssseesssseesssstesssssessssseesssseesssssesssseeesssseesssseeessssesensnnss 112
12.1.1 COlIUMN PTOPEITIES.eeeeeeeeierieeieetesiestestesetesteestesseestessteseesstatesatassesatessesnsessesnsesseensesseensesseessnseesseesnnsesnn 113
12.1.2 TIBDyNamiCGrid NEW PTOPETLIES.cocuevuereereeeieieetesieetesitete st etesitesee st esaesatessestessesssesseensesseensaesseens 114
12.1.3 TIBDYNAmMiCGIid NEW EVENLS.........ccveeveeeeiesreeeesteesteseetessesssesesssessesssessesssessssssesssessessssssesssessesssessesssessesns 115
12.1.4 TR EdItOT PANEL........c..coueiiiiieieieieeeteeetteieete sttt ettt et ettt b s bt et sb b sa et et e b e e et et e sseesmeesmeens 116
12.2 T B ONTROLGRID. ..ceeeuttteeuteeeatteeaiiteeasuteesaiseeesseeeaasteesasseessseesassseesasseessuseesssseseassseessnseessssaeesssseesssnnssseseeeessessnnns 117
12.2.1 TDBCONLIOIGTIA PTOPEITIES.ccueeeeereeeeereeeesseeeesseesesseestesseessessesssessesssessesssesssessessesssessesssesssessesssessesssens 118
12.2.2 TDBCONIIOIGTIA EVENLS........coueiueeuieiieieieeteeitetesttestesat et st estesat e be st esbe st e be e st e beeutesbeeate bt et esseesesaeesesas 118
12.3 TIBTREEVIEW. ccuutttiitieeeitteeitteestteesitteeeeiteeesuteesssteesuteesssteessastessasteesasteessaseesaasaeesssteessnsaesassaeesssbeaaaeeesssnnnnsnssnaes 119
12.3.1 TIBTI@EVIEW PTrOPEILICS.eecueeeueeriueeeeeeeiteeieesiteeteesiteeteserte s st esstesabeesstesaseesstessessseesbessstesnraeesssnseeessnnsen 119
12.3.2 TIBTYEEVIEW MEROUS........cccueeueeiieiieiieieeteeie ettt e et et sttt s et sateste st e sae st e ssesbesue e besstebessateessaesnneeenn 120
12.3.3 DTAQG AN DIOP.....ccueeeeeeeeeeeiereesteeteseseeseetesseetesseessesssessesseessesseessesssessesssessesssessessessesnsesseessesssesssessssees 120
12.4 TIBLOOKUPCOMBOEDITBOX......ctiittieiterriteriteenitieieeniteeteesitesiseesseesseesseesaseesstesseesseessessseessseesssessseesssseesssnsseesssnnes 122
12.4.1 TIBLookupComboOEitBOX EXAMPIE............ccoveeuereeereieesiesiecreseesteseessessessessessesssessesssessesssessssessssesssseens 122
12.4.1.1 AULO-IIISEI . c.eeeeieeiieeiee ettt ettt et e e sttt st e e bt e e bt e e bt e st e e st e e s eb e e e ab e e e st e ema e e saneesaneeemsesenaeesmetesmneennneeeeennnnne 123
12.4.2 TIBLOOKUPCOMDBOEItBOX PTOPEITIES.......ccueevuirueeienieieniteieeitesieete sttt et see et sae et e saeetesaeesbe s e esbesmaensens 124
12.4.3 TIBLookupComboEditBox EVent HANAIETS............cccoveevueriesienienieneesieetenieeteseee e seee e sstesteesaeeesveeesmeeens 125
12.5 TIBARRAYGRID.eeeterueerteettenteensteeteeastesseesseesseesseesaseasstesasessstesseesseesaseessaessseesstesseessaesaseesseesanseeesssnseeesssnes 125
T2.5.1 PTOPETEICS......eeeueeeeeeeeenetteeeeectteete e st e st e st e st e st e st e e e bt e s bt e sseesabe e s st esateeeste e st e see s bt aeseesaseessbesaseessaesnnsenesannee 125
T2.5.2 EXAMPIES.....ocueeiieiiiiteieietete ettt ettt sttt sttt ettt e et eae s st s bt e bt e bt sa e et e b e s et et et et et et e sbeeenteeaeeeas 126
12.5.2.1 Database CIOAtION........cc.eeutrtetrieieieteteitet ettt et et et et et et et et et et et et e sesae b et esbesbenbeseesbenbesbessesbesbesbeebessnennne 126
12.5.2.2 1D ATTAY EXAIMPLE......eiitieieriieriieieeientesieestesteseesteetesstesseessasssesssessesssesssesssessesssesssesssensesssesssesseessesssesssessssassnnne 127
12.5.3 2D AITAY EXAMPIE........cc.oeeeeeiieeieieeeeeieeeesteeeestestesseestessesssessaessasseessessesssessesssesssessessesssesseessesssessesseensessenns 128

Vi

Introduction

Introduction

The IBX for Lazarus Guide is a guide to the IBX fork created by MWA Software for Lazarus.

IBX for Lazarus is derived from the Open Source edition of IBX published by Borland/Inprise in
2000 under the InterBase Public License. In 2011, the Open Source edition of IBX was brought up-
to-date by MWA Software (http://www.mwasoftware.co.uk) and focused on the Firebird Database
API for both Linux and Windows platforms (32 and 64-bit), and has since been further developed. It
is released under the InterBase Public License for the original code and under the compatible

Initial Developers Public License for new software. The Firebird Relational Database Management
System can be downloaded from http://www.firebirdsgl.org.

While the core of the product remains the original IBX software, this version includes a completely
new set of property editors supporting SQL generation and testing using the Firebird Database
engine direct from the IDE. These are intended to be a significant improvement on the Delphi
Property Editors. IBSQLMonitor has also been re-organised in order to isolate the platform
dependent aspects, allowing for the use of SV5 IPC for the Linux environment. The original
Windows IPC is retained for the Windows environment. IBEvents has also been updated to ensure
compatibility with Firebird Events.

Support for generators has also been added compatible with the generator support added to IBX
after the Open Source edition was published, supporting both “On New Record” and “On Post”
generators. There are also many new data aware controls distributed as part of the package, plus
a scripting engine. TIBExtract has also been brought up-to-date.

From version 2 onwards, IBX uses the fbintf package to use either the new Firebird 3 API or the
legacy Firebird API. The fbintf package is partly derived from IBX and automatically loads the
Firebird 3 API, if available, the legacy API if not. fbintf is distributed with IBX. The Firebird Pascal
API Guide provided with the fbintf package provides important information on the installation for the
Firebird Server for development system and guidelines for deployment.

http://www.mwasoftware.co.uk/
http://www.firebirdsql.org/

IBX for Lazarus User Guide

See also the Firebird Pascal API Guide for information on:
* Using the API interfaces exposed by IBX
* Character sets and their relation to AnsiString Code Pages
* Deployment of applications using the Firebird Client library.
This Guide assumes that the reader has a basic knowledge of the Lazarus Integrated

Development Environment (IDE). Some knowledge of Firebird and database concepts is
desireable. However, a primer on the subject is provided (see chapter 3).

1.1 References

1. InterBase 6 API Guide (http://www.ibphoenix.com/files/60ApiGuide.zip)

2. Firebird 2.5 Language Reference

(http://firebirdsgl.org/file/documentation/reference_manuals/fblangref25-
en/html/fblangref25.html)

3. InterBase 6 Data Definition Guide (http://www.ibphoenix.com/files/60DataDef.zip)

4. Firebird 3.0.1 Release Notes
(http://www.firebirdsql.org/file/documentation/release_notes/html/en/3_0/rlsnotes30.html

5. IBX for Lazarus (MWA Software — http://www.mwasoftware.co.uk/ibx)
6. Firebird Pascal APl Guide — MWA Software, 2016

1.2 Change History

1.2.1 Version 1.1

This version has been updated to include:

* Extended TIBExtract functionality for output of data, including the simple XML formats for
binary blobs and arrays, and privileges (grants) given to Triggers and Stored Procedures.

* Extended TIBXScript functionality in order to process XML format data exported by
TIBExtract and embedded in INSERT Statements.

* Documentation of Data Output Formatters (see 7.2).
* Minor Typos and corrections.

1.2.2 Version 1.2
* Minor typos and corrections

1.2.3 Version 1.3

* Introduces TIBUpdate

http://www.mwasoftware.co.uk/ibx
http://www.firebirdsql.org/file/documentation/release_notes/html/en/3_0/rlsnotes30.html
http://www.ibphoenix.com/files/60DataDef.zip
http://firebirdsql.org/file/documentation/reference_manuals/fblangref25-en/html/fblangref25.html
http://firebirdsql.org/file/documentation/reference_manuals/fblangref25-en/html/fblangref25.html
http://www.ibphoenix.com/files/60ApiGuide.zip

1.24

1.2.5

Introduction

Version 1.4
Removal of ReadOnly as a common property of IBX TDatasets. This was never true.
Version 1.5
Support for Insert and Update query RETURNING clauses added (see 6.6.1.4)
Support for Delete query RETURING clauses added (see 6.6.1.5).
Support for Firebird 3 Identity Columns added (see 6.6.8).
A new section on IBX TField subclasses is provided as section 6.8.

The description of TIBStoredProc has been updated to include support for Firebird 3
Packages (see 6.4).

A new section on the TIBSQL Property Editor has been added (see 5.4.3).
A new section on row refresh has been added (see 6.6.9).

The cached updates section has been improved and now describes the use of
OnUpdateRecord and OnUpdateError event handlers (see 6.6.7).

Missing migration issue added to “Upgrading From Earlier Versions” on additional TIBSQL
error checks (See 2.5)

Text reviewed and corrected for typos and other minor errors.

Installation and Preparation for Use

Installation and Preparation for Use

IBX for Lazarus is distributed in a single archive (zip or tar.gz format) and includes the fbintf
package. You can obtain an up-to-date version from http://www.mwasoftware.co.uk/ibx.

The archive should be expanded into some permanent location on your development system
alongside the Lazarus IDE. One possible location is to add a directory called “otherComponents”
to your Lazarus installation directory and expand the IBX archive into that directory. IBX will then
be located under:

“<Lazarus installation directory>/otherComponents/ibx”.

2.1 Minimum Requirements
IBX 2.0.0 requires at least Lazarus version 1.6.0 and version 3.0.0 of the Free Pascal Compiler.
All versions of the Firebird Server are supported including version 3.

The Firebird client library must also be installed. If this client library supports the new Firebird 3
client API then this is used, otherwise IBX uses the older Firebird 2 API.

2.2 Installation under Lazarus

The Firebird Client Library should be installed on the system prior to installing into the Lazarus IDE.
The Firebird Pascal APl Guide provides guidelines for installing Firebird.

Installation into the Lazarus IDE is the same under both Linux and Windows. Unpack the source
code archive into some suitable permanent location, as described above, and open the “dclibx.Ipk”
package description file using the “Package->Open Package File” menu item to open the file.

When the Package Editor opens, click on “Use->Install”. Lazarus will now recompile itself and
restart. THREE new tabs should now be present on the Component Palette: “Firebird”, “Firebird

http://www.mwasoftware.co.uk/ibx

IBX for Lazarus User Guide

Admin”, and “Firebird Data Controls”. Respectively, these contain the IBX Database Access and
Service API components. A third tab on the palette will contain the “Firebird Data Controls”.

If no IBX components are visible, then the most likely reason is that the Firebird Client Library has
not been installed and/or cannot be located. See the Firebird Pascal API Guide for information on
how fbintf and hence IBX finds the Firebird Client Library.

2.3 Console Mode IBX

IBX can be used as visual components under Lazarus or in console mode programs. A separate
package is provided for console mode programs, and which excludes any LCL dependencies (e.g.
the IBDatabase built-in logon dialog). This is called “ibexpressconsolemode”.

All you need to do to use the console mode package in the IDE is to select "Packages->Open
Package File" and open ibexpressconsolemode.lpk which you can find in the ibx root directory. You
should then close it again immediately afterwards. There is no need to install or compile it.
Opening the package is sufficient for Lazarus to remember it.

An example of console mode use is provided in ibx/examples/fbsql.

2.4 Installing Firebird

You need access to a minimum of the Firebird Client library in order to use the fbintf package. This
applies to both development and deployment. Guidelines for deployment are give in chapter 13 of
the Firebird Pascal API Guide.

On a development system, the recommended approach is to download a pre-compiled installation
package from http://www.firebirdsgl.org and install the full system including examples. This will
ensure that the example “employee” database is both installed and available for use by the fbintf
testsuite, and a local server is available for testing. Firebird installation packages are available for
both Linux and Windows as will as OSX.

With Linux, it is also possible to use the packages provided with your distribution. However, these
will not necessarily be up-to-date. Under Debian/Ubuntu the example database is also provided as
a separate package and you will need to install this package as well as unpack the database from
a gzip archive and set the access permissions correctly before running the test suite.
Paradoxically, unless you are very familiar with Firebird and Linux, it is often easier to install the
firebirdsgl package than the one from your distro.

After installation, you should check that the “employee” is correctly listed in the “aliases.conf”
(databases.conf for Firebird 3) file in the Firebird installation folder. For example, with 32-bit
Firebird under Windows, the file

C:\Program Files (x86)\Firebird\Firebird 2 5\aliases.conf

should contain the line:

employee = C:\Program Files (x86)\Firebird\Firebird 2 5\examples\empbuild\employee.fdb

2.5 Upgrading from Earlier Versions

There are many differences between the IBX2 files and earlier versions and you should first either
remove or rename the directory containing earlier versions of IBX, and then install the new version

http://www.firebirdsql.org/

Installation and Preparation for Use

as described in the preceding section. Applications using IBX should be rebuilt rather than just
recompiled (use Run->Clean up and Build from the Lazarus menu).

IBX2 represents a major change in the underlying IBX codebase. The low level “glue” that
represented the language binding between the Firebird 'C' APl and native Pascal has been moved
into a new package “fbintf” and communication between IBX and this “glue” is now through a well
defined Pascal interface. Two implementations of the interface have been produced. One for the
legacy Firebird APl and another for the new Firebird 3 API. By default, IBX will use the Firebird 3
API, if available, otherwise it uses the legacy Firebird API.

The core body of IBX has been modified to use this new interface. Full support for Firebird Arrays
has also been introduced. However, the emphasis has been on maintaining backwards
compatibility as far as possible, even though there have been significant changes in the code base.

When migrating an existing IBX 1.4.x application to IBX 2.0.0 most users will need only to
recompile against the upgraded package. However, advanced users may need to make changes
due to the following incompatibilities:

1. The IBIntf, IBCodePage and IBXConst units have been removed from the package. Uses
clauses that use IBIntf or IBXConst should be replaced with use of the “IB” unit. This is now
part of the fbintf package and which provides the Firebird Pascal API including all constants
and type definitions associated with it.

IBCodePage was an internal unit providing the mapping between Firebird Character sets
and code pages. Equivalent functionality is now provided by the Firebird Pascal API.

2. Any use of the IBHeader unit should be replaced with use of the IB unit. If there is a
resulting compile time error after this has been done then, the reason is probably due to a
dependency on the legacy Firebird API. IBHeader still exists but it contains the definition of
the legacy API and any dependency on it implies a potential problem when IBX uses the
new Firebird 3 API. Any such dependency should be identified and replaced with the
equivalent functionality provided by the Firebird Pascal API defined in the IB unit.

3. The TIBSQL property SQLType has been renamed to SQLStatementType. The version roll
has been taken advantage of to remove a potentially ambiguous property name. The
property name is also used by the input and output metadata to define SQL data types.

4. InIBX2, Automatic transaction Start/Commit is no longer the default except at design time.
This may affect some simple uses of IBX with a single dataset on a form and no explicit
transaction management. A “transaction no active” error will result when a dataset is
opened if your application previously relied on this feature.

A new property AllowAutoActivateTransaction (see 5.2.4) has been added to
TIBCustomDataset descendents. By default this is false. If set to true then the original
behaviour is restored.

The version roll has again been taken advantage of to remove a problematic feature.
Autostart of transactions only ever worked properly with single dataset applications. With
multiple datasets, the order in which the datasets were closed became important (reverse
order to opening assumed). With multiple datasets, the transaction could easily remain
open after the datasets were closed relying on the database close to correctly perform a
transaction completion.

IBX for Lazarus User Guide

There could also be problems when explicit transaction start is used ,as the programmer
needs to make sure that the transaction was started before any datasets were accessed.
Otherwise, unexpected results could ensue.

On the other hand, it is a valuable feature at design time, allowing a dataset to be opened
and its data displayed in the IDE.

If your application relied upon automatic starting/completion of transactions, the simplest
way to restore this behaviour is to set the AllowAutoActivate Transaction property to true.

If your application has more than one dataset on the form then this property need only be
set for the first one that is opened (active property set to true). This dataset should also be
the last one closed (active set to false).

5. The UniqueParamNames property is now ignored and exists only for backwards
compatibility. Parameter name unigueness is now determined dynamically.

6. TIBSQL error checking is now more strict. In earlier versions, there were no checks for data
validity when (e.g.) accessing query results. In IBX2:

* An exception is raised if an attempt is made to access query results before the query

has been executed, when the cursor is at BOF or EOF, or after the query has been
closed.

* An exception is raised if an attempt is made to set query parameters before a query
has been prepared.

2.6 New Features with IBX2

* Firebird 3 AP| Support

* Access to the Firebird Pascal API for embedded SQL execution.

+ |IBDatabase: new property - CreateIfNotExists. If true and the database does not exist
when an attempt is made to connect to it (run time only) then an attempt is made to create
the database.

» |IBDatabase: new event - OnCreateDatabase. This event is called after a database has been
successfully created as a result of a call to CreateDatabase or when creating a database

after it was found not to exist.

* Support for arrays has been added. This includes a new field class (TIBArrayField) — see
chapter 9 - and a supported visual control derived from TcustomStringGrid.

2.7 Uninstalling IBX

To uninstall IBX, open the “dclibx.lpk” package description file using the “Package->Open Package
File” menu item to open the file.

When the Package Editor opens, click on “Use->Uninstall’. Lazarus will now recompile itself and
restart without the IBX components in the palette. You may now delete the IBX source code.

An Introduction to Databases, SQL and Firebird

An Introduction to Databases, SQL
and Firebird

This chapter is intended to provide a primer on Databases, SQL and Firebird for those not familiar
with these subjects. Readers who are familiar with them are invited to proof read this chapter but
otherwise, they may prefer to skip to the next chapter.

3.1 What is a Database?

The dictionary definition of a database is that a database is no more than a collection of data. It
says nothing about how the data is organised or accessed. Some databases can be just a large
amount of unstructured data, while others can be fully structured with strongly enforced rules. It is
the latter case that we are interested here, and we will leave the former to Google.

The type of database that Firebird manages, and for which the Structured Query Language (SQL)
was written, is structured with well defined rules so that they can be processed in a deterministic
fashion with repeatable outcomes. This type of database is well suited to business applications,
such as accounting and stock management, Personnel Management and Payroll.

3.1.1 In the Beginning

In the 1960s and through to the 1980s, Magnetic Tape was the dominate storage medium for big
company databases (accounting, stock, etc.). Magnetic Tape is a linear medium accessed
sequentially. The data is written to it as “records” and usually ordered using some common relation
such as account number or a person's name. Each record contains the data for the account or
some person's registration details.

Magnetic Tape databases had to be processed sequentially. It could take a long time to find the
record you are interested in, as you had to start at the beginning and work forwards, reading
through one or more tapes. Data update was equally laborious with the usual technique being to
prepare an update tape with update actions in the same order as the database records and the

IBX for Lazarus User Guide

application of updates was essentially a data merge between the current set of tapes and the
update tape resulting in a set of new master tapes.

3.1.2 The Arrival of Random Access Storage

Disk drives started becoming commonplace in the 1970s. Initially they were too expensive to hold
complete databases and were used to cache data and to speed up operations. As they become
bigger and cheaper, it was possible to start saving entire databases on to magnetic disks.

Magnetic disks can be randomly access. That is any sector on the disk can be accessed in about
the same speed as any other. This opened up the possibility of having high speed access to
database records and perhaps even in place updates. However, there was still the problem of how
do you find the record you are interested in? If you still had to start at the beginning and read on
until you found the desired record, access would still be slow and variable depending on how far
down the data the record was located.

3.1.3 Indexes

The answer was to create indexes, where an index is a comparatively small lookup table or tables
that may be randomly accessed and could quickly point you at the record you were interested in.

An index is intended for use with a selected key into the data (such as an account number). In
principle an index could be just a table of account numbers (the key into the record) and the sector
address (on the disk) where the record is held. The index table could then be searched much more
quickly than going through the entire database and give much faster access to the data.

For small databases, a simple lookup table is sufficient. However, for large databases, the
overhead of searching an index table is still significant and something better is needed. As a result,
Indexes became better structured. Perhaps one table for the first part of an account number and
then separate tables for the second part, and selected by lookup of the first part of the account
number.

Another approach was to generate a hash value from a record key (e.g. the account number) and
use that as a numeric table index to where the (e.g.) account number/record address was located.
The development of efficient indexes became an important line of research.

3.1.4 Multiple Indexes and Datasets

Of course, there was no reason why only a single index was the limit. A database could have many
indexes on the same data, one for each access key that you could define. Attention also moved to
the structure of the database. The terminology started firming up with the database being broken
up into smaller datasets, each with their own index; the sum total of datasets and indexes
becoming the database. Given that, in this case, the dataset was a list of identically structured
records, they could be modelled as “tables”, with each record being a table row and the fields of
each record forming the columns.

The original Magnetic Tape databases often contained data duplicated across different databases,
if only because it was too difficult to organise the simultaneous processing of multiple tapes. When
disks became common, there was value in removing duplication between datasets. This both
avoided the risk of differences between data describing the same thing and minimised the use of
still expensive disk storage.

10

An Introduction to Databases, SQL and Firebird

However, this did mean the creation of many more smaller datasets and their own indexes and the
need for the programs that accessed them to have simultaneous access to many datasets and to
“join” the data together.

3.1.5 The Need for Middleware

When applications start having to solve common problems there is always an opening for a
common middleware solution, and database access was no exception.

Soon many middleware solutions started appearing. Their role was to manage all the different
datasets and their indexes and to provide standard ways of joining the datasets and updating the
datasets. They freed the client applications from the need to open lots of separate files and instead
became a single point of access — the database provider.

3.1.6 Enter the RDBMS

The middleware solutions soon evolved into the kind of Relational Database Management Systems
(RDBMSs) that we know today. Although the various products have their differences, they can be
said to:

* Manage a database comprising many datasets, where each dataset is viewed as a table of
data accessed using one or more indexes.

* Maintain metadata (data about data) that describes each table in the database and each
index.

* Provide a single point of access to the database to client applications.

» Allow the data to be accessed by table or by joining tables together, using common keys, to
create larger virtual datasets (often called views).

» To provide a means to refine the views by limiting both the number of rows returned and the
columns in each row. Thereby improving both efficiency and security (by limiting access to
data).

* To provide a means to update rows, insert new rows and delete existing rows, including
whole table operations.

Throw in performance optimisation, backup and restore, data redundancy (e.g. shadow databases)
and you are starting to get something like the modern RDBMS. Some RDBMS servers still
maintain each dataset as a separate file (e.g. some versions of MySQL), while others place the
whole database in a single file and organise its contents into many files.

3.1.7 Multi-user Access

The old Magnetic Tape databases were, by their nature, single user access. However, a modern
RDBMS can support a large number of concurrent users all reading data and often updating
different parts of the database. In turn, this introduces the risk of conflict between different users
concurrently reading and writing to the same record.

Simple table or record “locks” are one way around this problem. A user that wants to update a table

or an individual record, first locks it, then updates the data and finally unlocks it. If only one user at
a time can create a lock this can ensure that a user can lock all related records they need to

11

IBX for Lazarus User Guide

update, update them and finally release them, ensuring that data consistency is maintained. Other
users can be prevented from updating those records while a lock is placed on them and can even
be prevented from reading them. Users can also be made to wait for a lock to be released.

While a basic record lock mechanism can be viewed as essential for concurrent database update,
modern RDBMSs usually go a step further and introduce the idea of a transaction.

Under this model of use, each database client connects to be database via a “Connection” (which
can be local or remote), and each connection can have multiple transactions active at any one
time, where a transaction:

* Has a well defined start and end, while existing for as long as the client needs it.

Is the context under which all data is accessed and updated.

* “Owns” any necessary table and record locks, dataset cursors and any other resources
used by a client.

* Provides “isolation” between concurrent users, in the sense controlling how much they see
of changes performed by other transactions.

* When the transaction ends, all changes made during the transaction can either be
committed — that is become changes to the database visible to everyone — or rolled back to
their state when the transaction started.

Transactions allow each client to have a consistent view of the database, and a means of
preventing data inconsistency resulting from conflicting changes.

3.2 The Structured Query Language (SQL)

As discussed above, a basic function of an RDBMS is to provide a means to define and maintain
the metadata: the table and index definitions. There is also a need to describe how tables are
joined and filtered to create views, both permanent and transient, and for commands to update the
database.

This requirement can be satisfied in many different ways. However, SQL has become the de facto
standard for these tasks. SQL dates back to IBM in the 1970s and provides a means to achieve
the above using an English like syntax. It was standardised by ANSI in 1986 and became an
international standard in 1987. There was a major update in 1992 (SQL-92) and further minor
revisions have taken place since then. While an international standard, each RDBMS has
implemented its own variations and hence has its own SQL dialect.

SQL can be split up into:

* The Data Definition Language (DDL), which is used to describe tables, indexes and views
i.e. to maintain the database metadata.

* The Data Manipulation Language (DML), which is used to get (select) data from the
database, as well as to insert, update and delete data.

* Transaction Management

12

An Introduction to Databases, SQL and Firebird

* Procedure and Trigger Language (PSQL), which is used to define operations on the
database that can be requested by a client or which take place automatically when data is
changed. In the latter case, this is often used to validate changes.

The following is an example of the DDL, and is an example of defining a database table:

CREATE TABLE EMPLOYEE

(
EMP_NO smallint NOT NULL,

FIRST_NAME varchar(15) NOT NULL,

LAST_NAME varchar(20) NOT NULL,

PHONE_EXT varchar(4),

HIRE_DATE timestamp DEFAULT CURRENT_TIMESTAMP NOT NULL,
DEPT_NO char(3) NOT NULL,

JOB_CODE varchar(5) NOT NULL,

JOB_GRADE smallint NOT NULL,

JOB_COUNTRY varchar(15) NOT NULL,

SALARY numeric(10,2) DEFAULT © NOT NULL,

PRIMARY KEY (EMP_NO)

);

The above defines the table as consisting of ten columns. Each column is given a name and a data
type. The table's primary key is the employee number (EMP_NO) and this provides a unique
identifier for each row.

Note that SQL statements are always case insensitive including column names (although later extensions
have allowed for column names that are case sensitive and which may include special characters by
enclosing them in double quotes).

The table definition also includes an important concept that has not been discussed so far and that
is the concept of the “NULL” value. Unless constrained to be “NOT NULL" as illustrated above, the
values in each row of a table column can be either a value in their declared type or have no value
(i.e. null). NULL values can be searched for, can be used to select data, and data values can be
set to NULL. The Firebird Null Guide provides more information on the use of Nulls.

An example of a Select Statement follows. This creates a temporary virtual dataset which can then
be read by the requesting client.

Select FIRST_NAME, LAST_NAME, EMP_NO,HIRE_DATE FROM EMPLOYEES
Where LAST_NAME LIKE 'P%';

The dataset returned by the above has only four columns and is filtered so that it comprises only
the employees whose last name starts with the letter 'P'.

Note: in SQL comparisons, the '%' character means any string.

3.3 The Firebird RDBMS

Firebird is an example of a Relational Database Management System (RDBMS). It is an Open
Source product with a permissive licence for use that includes use in commercial applications. It
can also require very little, if any, input from a System Manager and hence is well targeted on SME
applications. Although it generally scales well to larger applications, as well.

Firebird came about when Borland/Inprise released the InterBase 6.0 software under an Open
Source Licence in 2000. InterBase already had a long history (documented on

13

IBX for Lazarus User Guide

http://www.firebirdsgl.org/en/historical-reference/) and Firebird inherited a large user community
from InterBase.

In its modern instantiation, Firebird:
¢ is a multi-user, transaction based RDBMS

* uses SQL for Data Definition, Data Manipulation, Transaction Management and Procedure
and Trigger Definition.

* Deployed as either an embedded database engine (embedded server) or as a standalone
server accessed using TCP/IP supporting both local and remote connections.

* Uses a single file per database (with the option of secondary files to allow for overflow to
separate filesystems).

* Implementation packages are available for many platforms including Windows (32 and 64
bit), Linux (32 and 64 bit) and OSX.

Firebird also includes the concept of “Events”. That is asynchronous alerts that are PSQL
generated and which can be sent to an interested client. These are typically used from triggers to
alert other users to changes in the data.

3.4 And then there was IBX

Firebird provides a client library (DLL under Windows, shared object (.so) under Linux) through
which an Application Program Interface (API) is made available. This APl is “low level” providing a
basic set of functions with the data accessed through untyped pointers. This is a flexible approach,
allowing use from many different programming environments, whilst requiring work from the client
program to make sense of the data.

For 'C' programs, Firebird provides a pre-processor (gpre) that allows SQL statements to be
embedded into the code and which then generates the 'C' code necessary to pass those
statements to Firebird for execution and to pass input and receive output data to and from 'C' data
structures. However, no such pre-processor is available for Pascal.

When Borland released Delphi in the mid-nineties, it was arguably a revolutionary development in
visual programming. It also came with a model for database programming that included an abstract
model of a dataset and “data aware” controls. That is a means to link the controls (or widgets)
placed on forms with the fields in a dataset. This all works well as long as the abstract dataset can
be somehow made “concrete” and linked to the datasets provided by the RDBMS that the
developer wants to use.

The first versions of Delphi worked well with Paradox tables and included middleware known as
the Borland Database Engine (BDE) to provide drivers for SQL databases, including InterBase (a
trial version was shipped with Delphi). The BDE was probably not the most efficient solution for the
problem.

One improvement on this was the Free IB Components, written by Gregory H. Deatz for the
Hoagland, Longo, Moran, Dunst & Doukas Company. This was licensed by Borland and then
provided with Delphi as InterBase Express (IBX).

IBX provided a direct implementation of the abstract dataset model for InterBase, using the API
direct from a Delphi (Pascal) program. It allowed the programmer to define the datasets using SQL

14

http://www.firebirdsql.org/en/historical-reference/

An Introduction to Databases, SQL and Firebird

and to update data using SQL, whilst keeping within the Delphi dataset model. By making direct
use of the InterBase API it potentially gives the best performance possible to a Delphi program.

When Borland/Inprise released InterBase under an Open Source licence in 2000, it also released
the IBX codebase under the same licence. In 2011, a fork of the IBX Open Source release was
used by MWA Software to create IBX for Lazarus. This version of IBX was developed to work with
the Lazarus LCL and to use the Firebird RDBMS in either embedded or standalone server mode.

Since its original release, IBX for Lazarus has been both maintained and extended with the
introduction of additional components including an SQL Parser and script engine. In 2016, IBX2
included support for the new Firebird 3 API. This version includes a separate set of Pascal
Language Bindings (the fbintf package) that provides the foundation for IBX2. The fbintf package
can be used to effectively embed SQL statements within Pascal code.

15

IBX Overview

IBX Overview

The purpose of IBX is to provide an implementation of the TDataset model, and hence a data
source for Data Aware components, and doing so by making direct use of the Firebird API. There is
no middleware involved and the intent is to maximise performance. IBX is intended to provide the
best performance possible when using Firebird from a Pascal program.

Firebird is an SQL database and a knowledge of SQL is generally necessary for all but basic use of
IBX. IBX does not attempt to hide the SQL from the programmer*. Indeed, it gives the programmer
full use of SQL.

The IBX for Lazarus components should behave identically to their Delphi equivalents and many
online tutorials are available on how to use them. An introduction to their use is given below, and
many example programs are also provided.

4.1 Conversion From Delphi IBX
You should be aware of the following issues:

1. The IBX components make use of the TThread class, and, as such require that multi-
threading is enabled. Specifically, in the Linux environment, the “-dUseCThreads” option
must be present in the “Compiler Options->Options->Custom Options” and set for every
Lazarus project that uses them.

2. Prior to FPC 2.6.0, the TIntegerField type may cause problems when porting code from
Delphi to Lazarus.

3. FMTBcd is not yet implemented by the Free Pascal Compiler. IBX for Lazarus thus uses
the TFloatField type for extended floating point (64 bit) fields. This may cause problems
where converting Delphi programs to Lazarus. The recommended approach is to change all

IThe exception to this is the TIBTable and TIBStoredProc components. These can be used for simple database
applications without requiring any SQL programming.

17

IBX for Lazarus User Guide

TFmtBcdField types to TIBBcdFields. This will allow Delphi forms to be converted to
Lazarus. However, some of the conversions will not give the correct results. Typically, this
will result in field values that appear to be of the order of several billion when the program is
run. To resolve the problem, delete the field in the IDE Fields editor and then re-create it.
The correct field type will then be used.

Alternatively, all TFmtBcdField fields should be deleted prior to conversion and then
recreated in the IDE.

4.2 IBX in Context

The following diagram attempts to position IBX with respect to other packages. As illustrated the
fbintf package is the provider of the Firebird API and may be both directly access by the user, while
also providing the Firebird API to IBX. IBX is also accessed directly by the user, but also uses the
FCL which is where the TDataset abstract class is located. IBX can make use of the LCL but only
does so when not in console mode and this is only to provide the built-in Login Dialog.

IBX
LCL

FCL-DB fbintf

lllustration 1: How IBX Relates to other Packages

4.3 Component Overview

The following components are installed on the Firebird tab:

=l TIBDatabase Every project that uses IBX must have at least one TIBDatabase

B component. This is usually placed on a data module or the main
form, and represents the connection to the database. Its properties
identify the server on which the database is located, its name or
pathname on that server, the login credentials, and the local
character set when transliteration is required. It can also generate a
login prompt for the user name and password, or support a user
provided login form. See 5.1.

I TiBDatabaselnfo This component supports a TIBDatabase and provides read only
access to a database's properties and statistics. See 7.5.

18

e
1B~

IB =L

EE
B

TIBTransaction

TIBQuery

TIBUpdateSQL

TIBUpdate

TIBDataSet

IBX Overview

Every project that uses IBX must have at least one
TIBTransaction component. Firebird is a transaction oriented
database and all operations must take place in the context of a
transaction. Its properties determine the transaction isolation (see
Firebird documentation). A TIBTransaction is typically provided
with the TIBDatabase and linked to it by the TIBDatabase
DefaultTransaction property. See 5.2.

This component is a descendent of TDataset and generates the
dataset from the results of an SQL query (Select statement or a
Stored Procedure that returns a results set). The SQL query used
is given by its SQL property. This can be parameterised with the
values of the parameters set before the query is executed. When
the “active” property is set to true then the query is executed and
the results set returned. When “active” is set to false, the results set
is discarded. The dataset is read only unless its “UpdateObject”
property references a TIBUpdateSQL or a TIBUpdate object.

The TIBQuery's properties must identify the database and the
transaction used for executing the query. See 6.5.

This component may be referenced from a TIBQuery component
and is used to support updateable queries. It provides SQL
statements to:

¢ Delete the current row in the results set

* Refresh (from the database) the current row in the results
set

* Update the current row in the database to match the
(modified) values in the database

¢ |Insert a new row into the database.

See 6.6.

This component may be referenced from a TIBQuery component
and is a more general way to support updateable queries than that
provided by TIBUpdateSQL. While TIBUpdateSQL supports single
SQL statement for Delete, Update or Insert, TIBUpdate provides an
event handler for Update, Insert or Delete together with an
ISQLParams interface providing access to all current and “old” field
values. This gives the programmer complete freedom as to how the
Update, Insert or Delete is performed.

This is also a TDataset descendent and combines the functionality
of TIBQuery and TIBUpdateSQL into a single component. See 6.7.

Its properties must identify the database and the transaction used

19

IBX for Lazarus User Guide

zaLl TIBStoredProc

7 TIBSOL
I 7 Q

S
1B

20

TIBEvents

TIBSQLMonitor

for executing the query.

You will normally want to use TIBDataset instead of a TIBQuery
and TIBUpdateSQL pair. Alternatively, the latter combination may
be used, for example, when a form uses a TIBQuery to provide a
read only dataset, and a subclassed (inherited) form needs to
update the dataset. The IBUpdateSQL can be added to the
subclassed form to provide the update capability.

This component is used to execute a stored procedure (on the
Database Server), and one that does not generate a results set. Its
properties must identify the database and the transaction used for
executing the query. See 6.4.

This component is the basic SQL engine of IBX and is used
internally by TIBQuery, TIBDataset and TIBStoredProc to perform
SQL queries. It can be used directly by the programmer to
effectively implement embedded SQL statements.

Its properties must identify the database and the transaction used
for executing the query.

TIBSQL is essentially an object oriented encapsulation of the
Firebird DSQL API. See 6.5.

One very useful feature of the Firebird Database is its ability to
generate asynchronous “events” from a Stored Procedure or
Trigger and which can then be acted upon by any active client that
is listening on the event. Database clients can thus act immediately
on changes made by another client without needing to regularly
guery the database.

The TIBEvents component is used to register for and receive
Firebird Events. Up to 16 events can be waited upon
simultaneously. The name of each event to be listened to is set in
the component's Events property. If you need to wait on more than
16 events, then additional TIBEvents components can be used.

The event notification is asynchronous and takes place at the end
of the transaction in which the event was generated. A separate
thread is used by TIBEvents to wait on the event notification. When
the event occurs it calls the “OnEventAlert” event handler to report
which event has been received. Note that the event handler is run
in the context of the main thread and hence there is no need to
worry about thread synchronisation. See 5.3.

This component supports debugging and performance tuning by
allowing one process to monitor the SQL function calls in the same
or another process (on the same system).

The TIBDatabase trace flags determine which function calls can be
traced with respect to its database connection. However, a process

TIBTable

TIBEXxtract

TIBBatchMove

TIBXScript

IBX Overview

only starts to broadcast its function calls after an explicit call to the
IBSQLMonitor.EnableMonitoring procedure, and stops after a call
to IBSQLMonitor.DisableMonitoring.

To receive SQL Function call traces, you need to place a
TIBSQLMonitor component on your form. The properties of this
component can be set to filter the SQL function calls to what you
are interested in. The OnSQL event handler is used to receive and
process SQL function call trace events. See 7.4.

Note that the Windows implementation allows any process to monitor the
SQL Trace events broadcast by another. The Linux implementation
restricts monitoring to processes owned by the same user.

This component provides a simple TDataset descendent where the
contents of the dataset are the same as a named Database Table.
This component is useful for very simple applications, but
TIBDataset should normally be preferred for most applications. It
also supports Master/Detail relationships between linked tables.
See 6.3.

This component allows the extract of database metadata. The
component is intended to be compliant with all Firebird extensions
to the DDL up to and including Firebird 3. See 7.6.

This component supports a table to table copy from a source IBX
dataset to a TIBTable.

This component is used to run an SQL script in the specified file or
stream. The text is parsed into SQL statements which are executed
in turn. The intention is to be ISQL compatible but with extensions.
See 7.1.

The Firebird Admin tab provides the Service APl components. These support various server side
functions including user password maintenance and database backup/restore (see 10.1).

4.4

Databases and Transactions

IBX always access a database through a “connection” whether it is a local database or a remote
one. Data is the read and written in the context of a transaction. Transactions exist:

to isolate users from each other,

to allow a user to see a consistent view of the data independent of what other users are
doing,
to allow users to lock data for change and to control whether other users wait on such
locked data, and
to provide a well defined transaction start and end where, at a transaction end, any
changes made to the data are either committed and made available for other users to see,
or are abandoned and the data rolled back to where it was before the transaction started.

21

IBX for Lazarus User Guide

Firebird is a transaction oriented database and all interactions with the database have to take place
in the context of a transaction. Firebird allows multiple independent transactions to take place
simultaneously and provides several possible isolation strategies in order to avoid the transactions
interfering with each other.

At least one TIBDatabase (see 5.1) and one TIBTransaction (see 5.2) component are required for
an application that uses IBX. These are normally placed on the project's main form or on a data
module. The TIBDatabase component represents the connection to a database, and it's rare than a
project needs more than one such component (e.g. if you need to support simultaneous
connections to two or more databases).

The TIBDatabase component's properties identify the location of the database and provide the
logon parameters. It can also use a built in dialog to prompt for a user name/password or use an
application provided dialog. A default transaction is also identified in the TIBDatabase properties.
Datasets linked to this database automatically use the default transaction unless this is explicitly
overridden in the dataset's properties.

TIBTransaction represents a transaction, and, you can have as many TIBTransaction
components as necessary. A TIBTransaction is normally linked to single database (TIBDatabase)
but can be linked to multiple databases in order to synchronise updates to them.

4.5 Datasets

The TDataset model is integral to the managing the relationship between Data Aware controls and
database tables in both Lazarus and Delphi. A TDataset derived component is used, at its
simplest, to represent the data in a single database table. Data aware controls, such as TDBEdit
can then be linked to a single (text) column in the dataset and allow the data in the current row of
that column to be both displayed and edited. A control such as TDBGrid allows multiple rows to be
shown together and as a table.

An example of this is shown in lllustration 2. This is a snapshot from the example application (see
the “ibx/examples/employee” directory) and illustrates the use of TDBGrid to show a table of
database data.

45.1 Datasets and Transactions

Each dataset is linked to a single transaction and all data reads and writes using that dataset take
place in the context of this transaction.

In a simple application, you only need to include a single TIBTransaction component with your
application.

* In the most basic case, the first dataset to be activated implicitly starts the transaction (as
long as its AutoActivateTransaction property is set) and, if, when it is deactivated, no
other datasets are active, it will automatically commit the transaction. When the database is
closed, the default action of the TIBTransaction is to commit all changes.

* In amore advanced application (such as the example application), you will want more
control over committing or rolling back the transaction and TIBTransaction provides
methods to start a transaction and to commit it or roll it back. In this case, it is usually
advisable to explicitly start each transaction rather than relying on implicit starts as this
avoids a dataset unexpectedly committing a transaction when it is closed. Commit and
Rollback are then always under programmatic control.

22

IBX Overview

Note that when a transaction ends, all datasets referencing the transaction are automatically deactivated. A
new transaction has to be started and those datasets reactivated if they are to continue to be populated.

Employee List
Started Before | | I} Started After | | | Salary Range | None Specified v
Last Name | First Name |Emp No. | Dept Located Started Salary Add

3 Janet 34 Corporate Headquarters / Sales and USA 21-3-91 $61,637.81
|_|Bender Oliver H. 105 Corporate Headgquarters UsA 8-10-92 $212,850.00 Edit

Bennet Ann 28 Corporate Headquarters / Sales and | England 1-2-91 $22,935.00
: Bishop Dana 83 Corporate Headquarters / Engineerii USA 1-6-92 $62,550.00 Delete

Brown Kelly 109 Corporate Headquarters / Engineeri USA 4-2-93 £27,000.00 -
" |Burbank Jennifer M. 71 Corporate Headquarters / Engineerii USA 15-4-92 $53,167.50
| cook Kewin 107 Corporate Headquarters / Engineeril USA 1-2-93 $111,262.50
| De Souza Roger 29 Corporate Headquarters / Engineerii USA 18-2-91 £69,482.63
" |Ferrari Roberto 121 Corporate Headquarters / Sales and | Italy 12-7-93 $99,000,000.00
" |Fisher Pete 24 Corporate Headquarters / Engineerii USA 12-3-90 £81,810.19
" |Forest Phil 9 Corporate Headquarters / Engineerii USA 17-4-89 £75,060.00
B Jacques 134 Corporate Headquarters / Sales and France 23-8-93 $390,500.00
" |Green TJ. 138 Corporate Headquarters / Engineeril USA 1-11-93 £36,000.00
| Guckenheimer | Mark 145 Corporate Headquarters / Engineerii USA 2-5-94 £32,000.00
" [Han Stewart 14 Corporate Headquarters / Finance | USA 4-6-90 $69,482.63
ichida Yuki 110 Corporate Headquarters / Sales and | Japan 4-2-93 $6,000,000.00
N Johnson Leslie 8 Corporate Headquarters / Sales and | USA 5-4-89 $64,635.00
: Jehnson Scott 136 Corporate Headquarters / Engineeril USA 13-9-93 $60,000.00

$115,522,468.02

lllustration 2: Employee List from the examples/employee application

However, it is possible to save changes (commit the transaction) and to not close the datasets.
This is by using the TIBTransaction.CommitRetaining method. This commits the transaction
whilst retaining the transaction context. The datasets can thus remain open. The downside of using
this function is that in a multi-user database, the datasets only pick up changes made by other
users when they are closed and re-opened.

4.5.2 Single Table Datasets

While a single table may be used for simple applications, the dataset is more normally the result of
a database query where the result is one or more rows. In some cases, the dataset may just
consist of a single row where it is supporting a form that edit's that row's contents. This avoids the
overhead of reading many rows from a database when only a single one is needed.

In IBX, the TIBTable component is a TDataset descendent that allows a single table to be named
and, on your behalf, it does all that is necessary to read the rows in the table and update them as
required. It does this by automatically generating the SQL Statements needed to access and
update the database. However, this is a limited approach, and does not allow the full power of SQL
to be exploited.

4.5.3 SQL Defined Datasets
IBX also provides TIBQuery. This is also a TDataset descendent but reads a dataset that is the
result of an SQL Select Query specified by the programmer either a design to runtime. The query

can join multiple tables and be limited to just the rows required. It is much more powerful than just
accessing a single table.

23

IBX for Lazarus User Guide

If you need also to update the database after editing a TIBQuery results set, another component
(TIBUpdateSQL) can be linked to the TIBQuery to provide the SQL Statement necessary to Update,
Insert or Delete rows, or to refresh rows that may have changed.

More generally, TIBDataset is a component that allows you to specify the Select, Update, Insert,
Delete and Refresh queries in one component.

4.6 Examples
The ibx/example/employee example application provides an example of the use of the

TIBDatabase, TIBTransaction, TIBQuery and TIBDataset components supporting data aware
components for viewing and editing data from a database.

24

The Database Access Components

The Database Access Components

The IBX components are presented here in three main groups. This chapter is concerned with the
“Database Access” set of components. Chapter 6 is concerned with the dataset components, while
chapter 7 presents support components.

The IBX Database Access components are simply those components that are little more than
“wrappers for interfaces exported by the fbintf package, and are:

« TIBDatabase — encapsulates the |IAttachment interface

* TIBTransaction — encapsulates the ITransaction interface
* TIBEvent — encapsulates the IEvents interface

* TIBSQL — encapsulates the IStatement interface.

The Firebird Pascal API describes each of these interfaces in detail and how to use them.
However, when using, you should use the methods and properties provided by the component in
preference to similar methods and properties provided by the underlying interface, except as
described below.

5.1 TIBDatabase

This is a non-visual component and a TCustomConnection descendent. It provides the link between
the database connection as viewed by the TDataset model and the Firebird database connection.
The following properties are highlighted here:

Connected Set this property to true to connect to a database and to false to
disconnect.
AllowStreamConnected This property exists to avoid a conflict between connecting to a

database at design time and automatically connecting at run
time. (see 5.1.8).

25

IBX for Lazarus User Guide

CreateIfNotExists New in IBX2: If true, and an attempt is made to connect to a
database that does not exist, then the database is created, if
possible. See also the OnCreateDatabase event.

DatabaseName The pathname to the database includes the server name. The
format varies depending on the connection protocol used and
the way pathnames are expressed on the target system. See
the Firebird documentation for more information.

DefaultTransaction Reference to the default transaction for the database. This is
purely a convention. When a dataset is linked to a TIBDatabase,
it's default transaction is assigned as the dataset's transaction if
none is already specified.

IdleTimer If non-zero, this is the time in milliseconds between successive
polls for database activity. If no activity has been detected
between two successive polls then the database is automatically
disconnected. Can be used to timeout idle connections if
needed.

LoginPrompt When true, the a login dialog is shown to the user to confirm the
database user name (as given in the Params) and to enter a
password. If the OnLogin event handler is defined then this is
called and is expected to generate the login dialog. Otherwise,
the built-in login dialog is used.

Params This is a list of parameter values to be used in the Database
Parameter Block (DPB) at connect time. These are in
“keyword=" format. See below.

SQLDialect The default SQL dialect to be used for the connection (3 is
recommended). See Firebird Documentation.

SQLHourGlass If true, then the cursor is changed to an Hour Glass (or
equivalent) during calls to the database server.

UseSystemDefaultCodePage If true, then the system default code page is used as the
connection default character set. Not recommended for Lazarus
programs where UTF8 is assumed by many LCL functions.

5.1.1.1 Parameter Keywords

The parameters are best edited at design time using the database dialog editor (double click on the
TIBDatabase component icon, once it has been placed on your form). The parameter names
available include:

user_name Login user name

26

The Database Access Components

password Login password (use of this parameter to save a password at dedign tiem
is not recommended).

lc_ctype Name of the connection default character set (e.g. UTF8). UTF8 is
recommended for Lazarus programs.

5.1.2 Highlighted Events

TIBDatabase events are typically used to react to changes in the connection state. These include:

AfterConnect Called after a connection has been successfully established. A good place
to start the first transaction and open datasets.

AfterDisconnect Called after a connection has been disconnected.

BeforeConnect Called before an attempt is made to connect to a database. Could be used
to update the connection parameters, database name, etc.

BeforeDisconnect Called before an attempt is made to disconnect from a database.

OnCreateDatabase Called after a database has been successfully created. Could be used to
run a DDL script (e.g. using TIBXScript — see 7.1) to initialise the
database.

OnIdleTimer Called after an idle timer has disconnected the database.

OnLogin Called if LoginPrompt is true and maybe used to complete the login

parameters by prompting the user. If not set and LoginPrompt is true then
the built in login dialog is used.

5.1.3 Connecting to a Database

The recommended approach is:

* To set AllowStreamedConnect to false
* Do notinclude a password in the parameters
e Use the built-in or a user defined login prompt to confirm the user name and enter the

password.

The following code is recommended for setting the connected property to true. This may be part of
an OnShow handler for the main form or when otherwise required:

27

IBX for Lazarus User Guide

repeat
try
IBDatabasel.Connected := true;
except
on E:EIBClientError do
begin
Close;
Exit
end;
On E:Exception do
MessageDlg(E.Message, mtError, [mbOK], 0);
end;
until IBDatabasel.Connected;

An example of this code in use may be found in “ibx/example/employee”. The purpose of the
above is to trap and report errors, such as mis-typed passwords whilst allowing the user to click on
cancel and exit through a “client error”.

Note: you will need to add t