
Registered in England Registration No. 2624328

Issue 1.4,
24 January 2018

McCallum Whyman Associates Ltd

EMail: info@ mccallumwhyman.com, http://www.mccallumwhyman.com

MWA Software

IBX for
Lazarus

User Guide

COPYRIGHT

The copyright in this work is vested in McCallum Whyman
Associates Ltd. The contents of the document may be freely
distributed and copied provided the source is correctly
identified as this document.

© Copyright McCallum Whyman Associates Ltd (2016)
trading as MWA Software.

Disclaimer

Although our best efforts have been made to ensure that the
information contained within is up-to-date and accurate, no
warranty whatsover is offered as to its correctness and readers
are responsible for ensuring through testing or any other
appropriate procedures that the information provided is correct
and appropriate for the purpose for which it is used.

ii

CONTENTS Page

1 INTRODUCTION..1
1.1 REFERENCES..2
1.2 CHANGE HISTORY..2

1.2.1 Version 1.1..2
1.2.2 Version 1.2..2
1.2.3 Version 1.3..2
1.2.4 Version 1.4..3
1.2.5 Version 1.5..3

2 INSTALLATION AND PREPARATION FOR USE...5
2.1 MINIMUM REQUIREMENTS...5
2.2 INSTALLATION UNDER LAZARUS..5
2.3 CONSOLE MODE IBX..6
2.4 INSTALLING FIREBIRD...6
2.5 UPGRADING FROM EARLIER VERSIONS..6
2.6 NEW FEATURES WITH IBX2...8
2.7 UNINSTALLING IBX...8

3 AN INTRODUCTION TO DATABASES, SQL AND FIREBIRD...9
3.1 WHAT IS A DATABASE?...9

3.1.1 In the Beginning...9
3.1.2 The Arrival of Random Access Storage..10
3.1.3 Indexes...10
3.1.4 Multiple Indexes and Datasets...10
3.1.5 The Need for Middleware...11
3.1.6 Enter the RDBMS...11
3.1.7 Multi-user Access...11

3.2 THE STRUCTURED QUERY LANGUAGE (SQL)...12
3.3 THE FIREBIRD RDBMS..13
3.4 AND THEN THERE WAS IBX...14

4 IBX OVERVIEW...17
4.1 CONVERSION FROM DELPHI IBX...17
4.2 IBX IN CONTEXT..18
4.3 COMPONENT OVERVIEW..18
4.4 DATABASES AND TRANSACTIONS..21
4.5 DATASETS...22

4.5.1 Datasets and Transactions...22
4.5.2 Single Table Datasets...23
4.5.3 SQL Defined Datasets..23

4.6 EXAMPLES..24

5 THE DATABASE ACCESS COMPONENTS...25
5.1 TIBDATABASE..25

5.1.1.1 Parameter Keywords..26
5.1.2 Highlighted Events...27
5.1.3 Connecting to a Database..27
5.1.4 Database Disconnect...28
5.1.5 Creating a new Database...28
5.1.6 Dropping a Database...28
5.1.7 Using the Attachment Interface..28
5.1.8 Using the AllowStreamConnected Property...29

5.2 TIBTRANSACTION...29
5.2.1 Highlighted Properties...29
5.2.2 Events...30
5.2.3 Transactions and Databases..30
5.2.4 Starting a Transaction..31
5.2.5 Transaction Parameters...31
5.2.6 The Transaction Editor..33
5.2.7 Closing a Transaction..33

iii

5.2.8 Retaining Transaction State after Closure...34
5.3 TIBEVENT...34

5.3.1 Highlighted Properties...34
5.3.2 Events...34
5.3.3 Using Events..35

5.4 TIBSQL...35
5.4.1 Highlighted Published Properties..35
5.4.2 Using TIBSQL..36

5.4.2.1 Executing a Stored Procedure..36
5.4.2.2 A Stored Procedure that returns Output..36
5.4.2.3 Executing a Select Statement...37

5.4.3 The TIBSQL SQL Property Editor...38

6 THE DATASET COMPONENTS...41
6.1 IBX DATASETS...41
6.2 COMMON CONCEPTS...42

6.2.1 Common Properties..42
6.2.2 Common Events..43
6.2.3 Exception Handling..45
6.2.4 Character Sets and Code Pages...45

6.3 TIBTABLE...45
6.3.1 Highlighted Properties...45
6.3.2 Using TIBTable..46

6.3.2.1 Master/Detail Tables..46
6.4 TIBSTOREDPROC..47

6.4.1 Highlighted Properties...48
6.4.2 Using TIBStoredProc...48

6.5 TIBQUERY...49
6.5.1 Highlighted Properties...49
6.5.2 Using TIBQuery...49
6.5.3 The Select SQL Property Editor...50
6.5.4 Parameterised Queries..52

6.6 UPDATE OBJECTS...53
6.6.1 TIBUpdateSQL...53

6.6.1.1 Highlighted Properties...53
6.6.1.2 SQL Syntax for Update Object Queries...54
6.6.1.3 OLD and NEW Parameters..55
6.6.1.4 Insert and Update Returning Clauses...55
6.6.1.5 Delete Returning Clauses...56
6.6.1.6 Using Stored Procedures for Insert, Update or Delete...56

6.6.2 TIBUpdate..56
6.6.2.1 Highlighted Properties...57

6.6.3 Generators...57
6.6.4 Updating Datasets..58
6.6.5 Automatic Posting..59
6.6.6 The OnValidatePost Event...59
6.6.7 Cached Updates...59

6.6.7.1 Cached Updates using OnUpdateRecord...60
6.6.7.2 The OnUpdateError Event...60

6.6.8 Identity Columns..61
6.6.9 Row Refresh..62

6.7 TIBDATASET...62
6.7.1 Highlighted Properties...63

6.8 DATASET FIELDS..63
6.8.1 FieldDefs..63
6.8.2 IBX Fields..64

6.8.2.1 TIBBCDField, TIBSmallintField, TIBIntegerField and TIBLargeIntField..64
6.8.2.2 TIBStringField...64
6.8.2.3 TIBMemoField..65
6.8.2.4 TIBArrayField...66

7 IBX SUPPORT COMPONENTS..67
7.1 THE IBX SCRIPT ENGINE...67

iv

7.1.1 Properties:..68
7.1.2 Events:..68
7.1.3 Usage...69
7.1.4 Examples..69

7.1.4.1 The Script Engine Example...70
7.1.5 The fbsql Console Mode Application...71

7.2 THE DATA OUTPUT FORMATTERS...73
7.2.1 Usage...73
7.2.2 Properties...73

7.3 THE SQL PARSER...74
7.3.1 The Parser..74
7.3.2 Use with IBControls...75
7.3.3 Example..76
7.3.4 TSelectSQLParser Reference...77

7.4 ISQL MONITOR..77
7.4.1 TIBISQLMonitor..77

7.4.1.1 Selecting what to monitor..77
7.4.1.2 SQL Reports..78
7.4.1.3 Application Monitoring...78

7.4.2 Examples..78
7.4.2.1 Integrated Monitoring..78
7.4.2.2 Remote Monitoring..78

7.5 TIBDATABASEINFO..78
7.5.1 Per Table Counts..80

7.6 TIBEXTRACT..80
7.6.1 Extract of Binary Blobs..83
7.6.2 Extract of Array Data...84

8 USING FIREBIRD BLOBS...87
8.1 BLOB TYPES...87

8.1.1 Text Mode Blobs...87
8.1.2 Binary Blobs...88

8.2 STREAM MODE ACCESS TO BLOBS..88

9 USING FIREBIRD ARRAYS..89
9.1 DEFINING AN ARRAY ELEMENT..89
9.2 TIBARRAYFIELD..90

10 USING FIREBIRD SERVICES..91
10.1 FIREBIRD ADMIN COMPONENT OVERVIEW...91
10.2 COMMON SERVICE PROPERTIES..92
10.3 THE BACKUP SERVICE..93

10.3.1 Server Side Backup..93
10.3.2 Client Side Backup...93

10.4 THE RESTORE SERVICE...94
10.4.1 Server Side Restores...94
10.4.2 Client Side Restores...95

10.5 THE CONFIGURATION SERVICES..95
10.6 THE SERVER PROPERTIES SERVICE..96
10.7 THE LOG SERVICE...96
10.8 THE DATABASE STATISTICS SERVICES..97
10.9 THE SECURITY SERVICE..97

10.9.1 Listing all User Names...98
10.9.2 Adding a User..98
10.9.3 Updating User Details...99
10.9.4 Deleting a User..99

10.10 THE VALIDATION SERVICE...99
10.10.1 Database Repair..99
10.10.2 Resolving Limbo Transactions...100

11 PERSONAL DATABASES..103
11.1 TIBLOCALDBSUPPORT..103

11.1.1 Properties...104

v

11.1.2 Events:..105
11.1.3 Shared Data Directory...105
11.1.4 DatabaseName, and login parameters management...105
11.1.5 Database Initialisation...106
11.1.6 Saving the Current Database...106
11.1.7 Restoring the Database from an Archive..107
11.1.8 Database Schema Upgrade..107

11.2 LOCAL EMPLOYEEDB EXAMPLE..109
11.2.1 Running the application...109
11.2.2 Console Mode...109

12 THE IBX CONTROLS..111
12.1 TIBDYNAMICGRID..112

12.1.1 Column Properties...113
12.1.2 TIBDynamicGrid New Properties..114
12.1.3 TIBDynamicGrid new Events...115
12.1.4 The Editor Panel..116

12.2 TDBCONTROLGRID..117
12.2.1 TDBControlGrid Properties...118
12.2.2 TDBControlGrid Events...118

12.3 TIBTREEVIEW...119
12.3.1 TIBTreeView Properties...119
12.3.2 TIBTreeView Methods..120
12.3.3 Drag and Drop...120

12.4 TIBLOOKUPCOMBOEDITBOX...122
12.4.1 TIBLookupComboEditBox Example..122

12.4.1.1 Auto-insert...123
12.4.2 TIBLookupComboEditBox Properties..124
12.4.3 TIBLookupComboEditBox Event Handlers...125

12.5 TIBARRAYGRID...125
12.5.1 Properties...125
12.5.2 Examples..126

12.5.2.1 Database Creation..126
12.5.2.2 1D Array Example...127

12.5.3 2D Array Example..128

vi

 Introduction

1
Introduction

The IBX for Lazarus Guide is a guide to the IBX fork created by MWA Software for Lazarus.

IBX for Lazarus is derived from the Open Source edition of IBX published by Borland/Inprise in
2000 under the InterBase Public License. In 2011, the Open Source edition of IBX was brought up-
to-date by MWA Software (http://www.mwasoftware.co.uk) and focused on the Firebird Database
API for both Linux and Windows platforms (32 and 64-bit), and has since been further developed. It
is released under the InterBase Public License for the original code and under the compatible
Initial Developers Public License for new software. The Firebird Relational Database Management
System can be downloaded from http://www.firebirdsql.org.

While the core of the product remains the original IBX software, this version includes a completely
new set of property editors supporting SQL generation and testing using the Firebird Database
engine direct from the IDE. These are intended to be a significant improvement on the Delphi
Property Editors. IBSQLMonitor has also been re-organised in order to isolate the platform
dependent aspects, allowing for the use of SV5 IPC for the Linux environment. The original
Windows IPC is retained for the Windows environment. IBEvents has also been updated to ensure
compatibility with Firebird Events.

Support for generators has also been added compatible with the generator support added to IBX
after the Open Source edition was published, supporting both “On New Record” and “On Post”
generators. There are also many new data aware controls distributed as part of the package, plus
a scripting engine. TIBExtract has also been brought up-to-date.

From version 2 onwards, IBX uses the fbintf package to use either the new Firebird 3 API or the
legacy Firebird API. The fbintf package is partly derived from IBX and automatically loads the
Firebird 3 API, if available, the legacy API if not. fbintf is distributed with IBX. The Firebird Pascal
API Guide provided with the fbintf package provides important information on the installation for the
Firebird Server for development system and guidelines for deployment.

1

http://www.mwasoftware.co.uk/
http://www.firebirdsql.org/

IBX for Lazarus User Guide

See also the Firebird Pascal API Guide for information on:

• Using the API interfaces exposed by IBX

• Character sets and their relation to AnsiString Code Pages

• Deployment of applications using the Firebird Client library.

This Guide assumes that the reader has a basic knowledge of the Lazarus Integrated
Development Environment (IDE). Some knowledge of Firebird and database concepts is
desireable. However, a primer on the subject is provided (see chapter 3).

1.1 References

1. InterBase 6 API Guide (http://www.ibphoenix.com/files/60ApiGuide.zip)

2. Firebird 2.5 Language Reference
(http://firebirdsql.org/file/documentation/reference_manuals/fblangref25-
en/html/fblangref25.html)

3. InterBase 6 Data Definition Guide (http://www.ibphoenix.com/files/60DataDef.zip)

4. Firebird 3.0.1 Release Notes
(http://www.firebirdsql.org/file/documentation/release_notes/html/en/3_0/rlsnotes30.html

5. IBX for Lazarus (MWA Software – http://www.mwasoftware.co.uk/ibx)

6. Firebird Pascal API Guide – MWA Software, 2016

1.2 Change History

1.2.1 Version 1.1

This version has been updated to include:

• Extended TIBExtract functionality for output of data, including the simple XML formats for
binary blobs and arrays, and privileges (grants) given to Triggers and Stored Procedures.

• Extended TIBXScript functionality in order to process XML format data exported by
TIBExtract and embedded in INSERT Statements.

• Documentation of Data Output Formatters (see 7.2).

• Minor Typos and corrections.

1.2.2 Version 1.2

• Minor typos and corrections

1.2.3 Version 1.3

• Introduces TIBUpdate

2

http://www.mwasoftware.co.uk/ibx
http://www.firebirdsql.org/file/documentation/release_notes/html/en/3_0/rlsnotes30.html
http://www.ibphoenix.com/files/60DataDef.zip
http://firebirdsql.org/file/documentation/reference_manuals/fblangref25-en/html/fblangref25.html
http://firebirdsql.org/file/documentation/reference_manuals/fblangref25-en/html/fblangref25.html
http://www.ibphoenix.com/files/60ApiGuide.zip

 Introduction

1.2.4 Version 1.4

• Removal of ReadOnly as a common property of IBX TDatasets. This was never true.

1.2.5 Version 1.5

• Support for Insert and Update query RETURNING clauses added (see 6.6.1.4)

• Support for Delete query RETURING clauses added (see 6.6.1.5).

• Support for Firebird 3 Identity Columns added (see 6.6.8).

• A new section on IBX TField subclasses is provided as section 6.8.

• The description of TIBStoredProc has been updated to include support for Firebird 3
Packages (see 6.4).

• A new section on the TIBSQL Property Editor has been added (see 5.4.3).

• A new section on row refresh has been added (see 6.6.9).

• The cached updates section has been improved and now describes the use of
OnUpdateRecord and OnUpdateError event handlers (see 6.6.7).

• Missing migration issue added to “Upgrading From Earlier Versions” on additional TIBSQL
error checks (See 2.5)

• Text reviewed and corrected for typos and other minor errors.

3

 Installation and Preparation for Use

2
Installation and Preparation for Use

IBX for Lazarus is distributed in a single archive (zip or tar.gz format) and includes the fbintf
package. You can obtain an up-to-date version from http://www.mwasoftware.co.uk/ibx.

The archive should be expanded into some permanent location on your development system
alongside the Lazarus IDE. One possible location is to add a directory called “otherComponents”
to your Lazarus installation directory and expand the IBX archive into that directory. IBX will then
be located under:

“<Lazarus installation directory>/otherComponents/ibx”.

2.1 Minimum Requirements

IBX 2.0.0 requires at least Lazarus version 1.6.0 and version 3.0.0 of the Free Pascal Compiler.

All versions of the Firebird Server are supported including version 3.

The Firebird client library must also be installed. If this client library supports the new Firebird 3
client API then this is used, otherwise IBX uses the older Firebird 2 API.

2.2 Installation under Lazarus

The Firebird Client Library should be installed on the system prior to installing into the Lazarus IDE.
The Firebird Pascal API Guide provides guidelines for installing Firebird.

Installation into the Lazarus IDE is the same under both Linux and Windows. Unpack the source
code archive into some suitable permanent location, as described above, and open the “dclibx.lpk”
package description file using the “Package->Open Package File” menu item to open the file.

When the Package Editor opens, click on “Use->Install”. Lazarus will now recompile itself and
restart. THREE new tabs should now be present on the Component Palette: “Firebird”, “Firebird

5

http://www.mwasoftware.co.uk/ibx

IBX for Lazarus User Guide

Admin”, and “Firebird Data Controls”. Respectively, these contain the IBX Database Access and
Service API components. A third tab on the palette will contain the “Firebird Data Controls”.

If no IBX components are visible, then the most likely reason is that the Firebird Client Library has
not been installed and/or cannot be located. See the Firebird Pascal API Guide for information on
how fbintf and hence IBX finds the Firebird Client Library.

2.3 Console Mode IBX

IBX can be used as visual components under Lazarus or in console mode programs. A separate
package is provided for console mode programs, and which excludes any LCL dependencies (e.g.
the IBDatabase built-in logon dialog). This is called “ibexpressconsolemode”.

All you need to do to use the console mode package in the IDE is to select "Packages->Open
Package File" and open ibexpressconsolemode.lpk which you can find in the ibx root directory. You
should then close it again immediately afterwards. There is no need to install or compile it.
Opening the package is sufficient for Lazarus to remember it.

An example of console mode use is provided in ibx/examples/fbsql.

2.4 Installing Firebird

You need access to a minimum of the Firebird Client library in order to use the fbintf package. This
applies to both development and deployment. Guidelines for deployment are give in chapter 13 of
the Firebird Pascal API Guide.

On a development system, the recommended approach is to download a pre-compiled installation
package from http://www.firebirdsql.org and install the full system including examples. This will
ensure that the example “employee” database is both installed and available for use by the fbintf
testsuite, and a local server is available for testing. Firebird installation packages are available for
both Linux and Windows as will as OSX.

With Linux, it is also possible to use the packages provided with your distribution. However, these
will not necessarily be up-to-date. Under Debian/Ubuntu the example database is also provided as
a separate package and you will need to install this package as well as unpack the database from
a gzip archive and set the access permissions correctly before running the test suite.
Paradoxically, unless you are very familiar with Firebird and Linux, it is often easier to install the
firebirdsql package than the one from your distro.

After installation, you should check that the “employee” is correctly listed in the “aliases.conf”
(databases.conf for Firebird 3) file in the Firebird installation folder. For example, with 32-bit
Firebird under Windows, the file

C:\Program Files (x86)\Firebird\Firebird_2_5\aliases.conf

should contain the line:

employee = C:\Program Files (x86)\Firebird\Firebird_2_5\examples\empbuild\employee.fdb

2.5 Upgrading from Earlier Versions

There are many differences between the IBX2 files and earlier versions and you should first either
remove or rename the directory containing earlier versions of IBX, and then install the new version

6

http://www.firebirdsql.org/

 Installation and Preparation for Use

as described in the preceding section. Applications using IBX should be rebuilt rather than just
recompiled (use Run->Clean up and Build from the Lazarus menu).

IBX2 represents a major change in the underlying IBX codebase. The low level “glue” that
represented the language binding between the Firebird 'C' API and native Pascal has been moved
into a new package “fbintf” and communication between IBX and this “glue” is now through a well
defined Pascal interface. Two implementations of the interface have been produced. One for the
legacy Firebird API and another for the new Firebird 3 API. By default, IBX will use the Firebird 3
API, if available, otherwise it uses the legacy Firebird API.

The core body of IBX has been modified to use this new interface. Full support for Firebird Arrays
has also been introduced. However, the emphasis has been on maintaining backwards
compatibility as far as possible, even though there have been significant changes in the code base.

When migrating an existing IBX 1.4.x application to IBX 2.0.0 most users will need only to
recompile against the upgraded package. However, advanced users may need to make changes
due to the following incompatibilities:

1. The IBIntf, IBCodePage and IBXConst units have been removed from the package. Uses
clauses that use IBIntf or IBXConst should be replaced with use of the “IB” unit. This is now
part of the fbintf package and which provides the Firebird Pascal API including all constants
and type definitions associated with it.

IBCodePage was an internal unit providing the mapping between Firebird Character sets
and code pages. Equivalent functionality is now provided by the Firebird Pascal API.

2. Any use of the IBHeader unit should be replaced with use of the IB unit. If there is a
resulting compile time error after this has been done then, the reason is probably due to a
dependency on the legacy Firebird API. IBHeader still exists but it contains the definition of
the legacy API and any dependency on it implies a potential problem when IBX uses the
new Firebird 3 API. Any such dependency should be identified and replaced with the
equivalent functionality provided by the Firebird Pascal API defined in the IB unit.

3. The TIBSQL property SQLType has been renamed to SQLStatementType. The version roll
has been taken advantage of to remove a potentially ambiguous property name. The
property name is also used by the input and output metadata to define SQL data types.

4. In IBX2, Automatic transaction Start/Commit is no longer the default except at design time.
This may affect some simple uses of IBX with a single dataset on a form and no explicit
transaction management. A “transaction no active” error will result when a dataset is
opened if your application previously relied on this feature.

A new property AllowAutoActivateTransaction (see 5.2.4) has been added to
TIBCustomDataset descendents. By default this is false. If set to true then the original
behaviour is restored.

The version roll has again been taken advantage of to remove a problematic feature.
Autostart of transactions only ever worked properly with single dataset applications. With
multiple datasets, the order in which the datasets were closed became important (reverse
order to opening assumed). With multiple datasets, the transaction could easily remain
open after the datasets were closed relying on the database close to correctly perform a
transaction completion.

7

IBX for Lazarus User Guide

There could also be problems when explicit transaction start is used ,as the programmer
needs to make sure that the transaction was started before any datasets were accessed.
Otherwise, unexpected results could ensue.

On the other hand, it is a valuable feature at design time, allowing a dataset to be opened
and its data displayed in the IDE.

If your application relied upon automatic starting/completion of transactions, the simplest
way to restore this behaviour is to set the AllowAutoActivateTransaction property to true.

If your application has more than one dataset on the form then this property need only be
set for the first one that is opened (active property set to true). This dataset should also be
the last one closed (active set to false).

5. The UniqueParamNames property is now ignored and exists only for backwards
compatibility. Parameter name uniqueness is now determined dynamically.

6. TIBSQL error checking is now more strict. In earlier versions, there were no checks for data
validity when (e.g.) accessing query results. In IBX2:

• An exception is raised if an attempt is made to access query results before the query

has been executed, when the cursor is at BOF or EOF, or after the query has been
closed.

• An exception is raised if an attempt is made to set query parameters before a query

has been prepared.

2.6 New Features with IBX2

• Firebird 3 API Support

• Access to the Firebird Pascal API for embedded SQL execution.

• IBDatabase: new property - CreateIfNotExists. If true and the database does not exist
when an attempt is made to connect to it (run time only) then an attempt is made to create
the database.

• IBDatabase: new event - OnCreateDatabase. This event is called after a database has been
successfully created as a result of a call to CreateDatabase or when creating a database
after it was found not to exist.

• Support for arrays has been added. This includes a new field class (TIBArrayField) – see
chapter 9 - and a supported visual control derived from TcustomStringGrid.

2.7 Uninstalling IBX

To uninstall IBX, open the “dclibx.lpk” package description file using the “Package->Open Package
File” menu item to open the file.

When the Package Editor opens, click on “Use->Uninstall”. Lazarus will now recompile itself and
restart without the IBX components in the palette. You may now delete the IBX source code.

8

 An Introduction to Databases, SQL and Firebird

3
An Introduction to Databases, SQL

and Firebird
This chapter is intended to provide a primer on Databases, SQL and Firebird for those not familiar
with these subjects. Readers who are familiar with them are invited to proof read this chapter but
otherwise, they may prefer to skip to the next chapter.

3.1 What is a Database?

The dictionary definition of a database is that a database is no more than a collection of data. It
says nothing about how the data is organised or accessed. Some databases can be just a large
amount of unstructured data, while others can be fully structured with strongly enforced rules. It is
the latter case that we are interested here, and we will leave the former to Google.

The type of database that Firebird manages, and for which the Structured Query Language (SQL)
was written, is structured with well defined rules so that they can be processed in a deterministic
fashion with repeatable outcomes. This type of database is well suited to business applications,
such as accounting and stock management, Personnel Management and Payroll.

3.1.1 In the Beginning

In the 1960s and through to the 1980s, Magnetic Tape was the dominate storage medium for big
company databases (accounting, stock, etc.). Magnetic Tape is a linear medium accessed
sequentially. The data is written to it as “records” and usually ordered using some common relation
such as account number or a person's name. Each record contains the data for the account or
some person's registration details.

Magnetic Tape databases had to be processed sequentially. It could take a long time to find the
record you are interested in, as you had to start at the beginning and work forwards, reading
through one or more tapes. Data update was equally laborious with the usual technique being to
prepare an update tape with update actions in the same order as the database records and the

9

IBX for Lazarus User Guide

application of updates was essentially a data merge between the current set of tapes and the
update tape resulting in a set of new master tapes.

3.1.2 The Arrival of Random Access Storage

Disk drives started becoming commonplace in the 1970s. Initially they were too expensive to hold
complete databases and were used to cache data and to speed up operations. As they become
bigger and cheaper, it was possible to start saving entire databases on to magnetic disks.

Magnetic disks can be randomly access. That is any sector on the disk can be accessed in about
the same speed as any other. This opened up the possibility of having high speed access to
database records and perhaps even in place updates. However, there was still the problem of how
do you find the record you are interested in? If you still had to start at the beginning and read on
until you found the desired record, access would still be slow and variable depending on how far
down the data the record was located.

3.1.3 Indexes

The answer was to create indexes, where an index is a comparatively small lookup table or tables
that may be randomly accessed and could quickly point you at the record you were interested in.

An index is intended for use with a selected key into the data (such as an account number). In
principle an index could be just a table of account numbers (the key into the record) and the sector
address (on the disk) where the record is held. The index table could then be searched much more
quickly than going through the entire database and give much faster access to the data.

For small databases, a simple lookup table is sufficient. However, for large databases, the
overhead of searching an index table is still significant and something better is needed. As a result,
Indexes became better structured. Perhaps one table for the first part of an account number and
then separate tables for the second part, and selected by lookup of the first part of the account
number.

Another approach was to generate a hash value from a record key (e.g. the account number) and
use that as a numeric table index to where the (e.g.) account number/record address was located.
The development of efficient indexes became an important line of research.

3.1.4 Multiple Indexes and Datasets

Of course, there was no reason why only a single index was the limit. A database could have many
indexes on the same data, one for each access key that you could define. Attention also moved to
the structure of the database. The terminology started firming up with the database being broken
up into smaller datasets, each with their own index; the sum total of datasets and indexes
becoming the database. Given that, in this case, the dataset was a list of identically structured
records, they could be modelled as “tables”, with each record being a table row and the fields of
each record forming the columns.

The original Magnetic Tape databases often contained data duplicated across different databases,
if only because it was too difficult to organise the simultaneous processing of multiple tapes. When
disks became common, there was value in removing duplication between datasets. This both
avoided the risk of differences between data describing the same thing and minimised the use of
still expensive disk storage.

10

 An Introduction to Databases, SQL and Firebird

However, this did mean the creation of many more smaller datasets and their own indexes and the
need for the programs that accessed them to have simultaneous access to many datasets and to
“join” the data together.

3.1.5 The Need for Middleware

When applications start having to solve common problems there is always an opening for a
common middleware solution, and database access was no exception.

Soon many middleware solutions started appearing. Their role was to manage all the different
datasets and their indexes and to provide standard ways of joining the datasets and updating the
datasets. They freed the client applications from the need to open lots of separate files and instead
became a single point of access – the database provider.

3.1.6 Enter the RDBMS

The middleware solutions soon evolved into the kind of Relational Database Management Systems
(RDBMSs) that we know today. Although the various products have their differences, they can be
said to:

• Manage a database comprising many datasets, where each dataset is viewed as a table of
data accessed using one or more indexes.

• Maintain metadata (data about data) that describes each table in the database and each
index.

• Provide a single point of access to the database to client applications.

• Allow the data to be accessed by table or by joining tables together, using common keys, to
create larger virtual datasets (often called views).

• To provide a means to refine the views by limiting both the number of rows returned and the
columns in each row. Thereby improving both efficiency and security (by limiting access to
data).

• To provide a means to update rows, insert new rows and delete existing rows, including
whole table operations.

Throw in performance optimisation, backup and restore, data redundancy (e.g. shadow databases)
and you are starting to get something like the modern RDBMS. Some RDBMS servers still
maintain each dataset as a separate file (e.g. some versions of MySQL), while others place the
whole database in a single file and organise its contents into many files.

3.1.7 Multi-user Access

The old Magnetic Tape databases were, by their nature, single user access. However, a modern
RDBMS can support a large number of concurrent users all reading data and often updating
different parts of the database. In turn, this introduces the risk of conflict between different users
concurrently reading and writing to the same record.

Simple table or record “locks” are one way around this problem. A user that wants to update a table
or an individual record, first locks it, then updates the data and finally unlocks it. If only one user at
a time can create a lock this can ensure that a user can lock all related records they need to

11

IBX for Lazarus User Guide

update, update them and finally release them, ensuring that data consistency is maintained. Other
users can be prevented from updating those records while a lock is placed on them and can even
be prevented from reading them. Users can also be made to wait for a lock to be released.

While a basic record lock mechanism can be viewed as essential for concurrent database update,
modern RDBMSs usually go a step further and introduce the idea of a transaction.

Under this model of use, each database client connects to be database via a “Connection” (which
can be local or remote), and each connection can have multiple transactions active at any one
time, where a transaction:

• Has a well defined start and end, while existing for as long as the client needs it.

• Is the context under which all data is accessed and updated.

• “Owns” any necessary table and record locks, dataset cursors and any other resources
used by a client.

• Provides “isolation” between concurrent users, in the sense controlling how much they see
of changes performed by other transactions.

• When the transaction ends, all changes made during the transaction can either be
committed – that is become changes to the database visible to everyone – or rolled back to
their state when the transaction started.

Transactions allow each client to have a consistent view of the database, and a means of
preventing data inconsistency resulting from conflicting changes.

3.2 The Structured Query Language (SQL)

As discussed above, a basic function of an RDBMS is to provide a means to define and maintain
the metadata: the table and index definitions. There is also a need to describe how tables are
joined and filtered to create views, both permanent and transient, and for commands to update the
database.

This requirement can be satisfied in many different ways. However, SQL has become the de facto
standard for these tasks. SQL dates back to IBM in the 1970s and provides a means to achieve
the above using an English like syntax. It was standardised by ANSI in 1986 and became an
international standard in 1987. There was a major update in 1992 (SQL-92) and further minor
revisions have taken place since then. While an international standard, each RDBMS has
implemented its own variations and hence has its own SQL dialect.

SQL can be split up into:

• The Data Definition Language (DDL), which is used to describe tables, indexes and views
i.e. to maintain the database metadata.

• The Data Manipulation Language (DML), which is used to get (select) data from the
database, as well as to insert, update and delete data.

• Transaction Management

12

 An Introduction to Databases, SQL and Firebird

• Procedure and Trigger Language (PSQL), which is used to define operations on the
database that can be requested by a client or which take place automatically when data is
changed. In the latter case, this is often used to validate changes.

The following is an example of the DDL, and is an example of defining a database table:

CREATE TABLE EMPLOYEE
(
 EMP_NO smallint NOT NULL,
 FIRST_NAME varchar(15) NOT NULL,
 LAST_NAME varchar(20) NOT NULL,
 PHONE_EXT varchar(4),
 HIRE_DATE timestamp DEFAULT CURRENT_TIMESTAMP NOT NULL,
 DEPT_NO char(3) NOT NULL,
 JOB_CODE varchar(5) NOT NULL,
 JOB_GRADE smallint NOT NULL,
 JOB_COUNTRY varchar(15) NOT NULL,
 SALARY numeric(10,2) DEFAULT 0 NOT NULL,
 PRIMARY KEY (EMP_NO)
);

The above defines the table as consisting of ten columns. Each column is given a name and a data
type. The table's primary key is the employee number (EMP_NO) and this provides a unique
identifier for each row.

Note that SQL statements are always case insensitive including column names (although later extensions
have allowed for column names that are case sensitive and which may include special characters by
enclosing them in double quotes).

The table definition also includes an important concept that has not been discussed so far and that
is the concept of the “NULL” value. Unless constrained to be “NOT NULL” as illustrated above, the
values in each row of a table column can be either a value in their declared type or have no value
(i.e. null). NULL values can be searched for, can be used to select data, and data values can be
set to NULL. The Firebird Null Guide provides more information on the use of Nulls.

An example of a Select Statement follows. This creates a temporary virtual dataset which can then
be read by the requesting client.

Select FIRST_NAME,LAST_NAME,EMP_NO,HIRE_DATE FROM EMPLOYEES
 Where LAST_NAME LIKE 'P%';

The dataset returned by the above has only four columns and is filtered so that it comprises only
the employees whose last name starts with the letter 'P'.

Note: in SQL comparisons, the '%' character means any string.

3.3 The Firebird RDBMS

Firebird is an example of a Relational Database Management System (RDBMS). It is an Open
Source product with a permissive licence for use that includes use in commercial applications. It
can also require very little, if any, input from a System Manager and hence is well targeted on SME
applications. Although it generally scales well to larger applications, as well.

Firebird came about when Borland/Inprise released the InterBase 6.0 software under an Open
Source Licence in 2000. InterBase already had a long history (documented on

13

IBX for Lazarus User Guide

http://www.firebirdsql.org/en/historical-reference/) and Firebird inherited a large user community
from InterBase.

In its modern instantiation, Firebird:

• is a multi-user, transaction based RDBMS

• uses SQL for Data Definition, Data Manipulation, Transaction Management and Procedure
and Trigger Definition.

• Deployed as either an embedded database engine (embedded server) or as a standalone
server accessed using TCP/IP supporting both local and remote connections.

• Uses a single file per database (with the option of secondary files to allow for overflow to
separate filesystems).

• Implementation packages are available for many platforms including Windows (32 and 64
bit), Linux (32 and 64 bit) and OSX.

Firebird also includes the concept of “Events”. That is asynchronous alerts that are PSQL
generated and which can be sent to an interested client. These are typically used from triggers to
alert other users to changes in the data.

3.4 And then there was IBX

Firebird provides a client library (DLL under Windows, shared object (.so) under Linux) through
which an Application Program Interface (API) is made available. This API is “low level” providing a
basic set of functions with the data accessed through untyped pointers. This is a flexible approach,
allowing use from many different programming environments, whilst requiring work from the client
program to make sense of the data.

For 'C' programs, Firebird provides a pre-processor (gpre) that allows SQL statements to be
embedded into the code and which then generates the 'C' code necessary to pass those
statements to Firebird for execution and to pass input and receive output data to and from 'C' data
structures. However, no such pre-processor is available for Pascal.

When Borland released Delphi in the mid-nineties, it was arguably a revolutionary development in
visual programming. It also came with a model for database programming that included an abstract
model of a dataset and “data aware” controls. That is a means to link the controls (or widgets)
placed on forms with the fields in a dataset. This all works well as long as the abstract dataset can
be somehow made “concrete” and linked to the datasets provided by the RDBMS that the
developer wants to use.

The first versions of Delphi worked well with Paradox tables and included middleware known as
the Borland Database Engine (BDE) to provide drivers for SQL databases, including InterBase (a
trial version was shipped with Delphi). The BDE was probably not the most efficient solution for the
problem.

One improvement on this was the Free IB Components, written by Gregory H. Deatz for the
Hoagland, Longo, Moran, Dunst & Doukas Company. This was licensed by Borland and then
provided with Delphi as InterBase Express (IBX).

IBX provided a direct implementation of the abstract dataset model for InterBase, using the API
direct from a Delphi (Pascal) program. It allowed the programmer to define the datasets using SQL

14

http://www.firebirdsql.org/en/historical-reference/

 An Introduction to Databases, SQL and Firebird

and to update data using SQL, whilst keeping within the Delphi dataset model. By making direct
use of the InterBase API it potentially gives the best performance possible to a Delphi program.

When Borland/Inprise released InterBase under an Open Source licence in 2000, it also released
the IBX codebase under the same licence. In 2011, a fork of the IBX Open Source release was
used by MWA Software to create IBX for Lazarus. This version of IBX was developed to work with
the Lazarus LCL and to use the Firebird RDBMS in either embedded or standalone server mode.

Since its original release, IBX for Lazarus has been both maintained and extended with the
introduction of additional components including an SQL Parser and script engine. In 2016, IBX2
included support for the new Firebird 3 API. This version includes a separate set of Pascal
Language Bindings (the fbintf package) that provides the foundation for IBX2. The fbintf package
can be used to effectively embed SQL statements within Pascal code.

15

 IBX Overview

4
IBX Overview

The purpose of IBX is to provide an implementation of the TDataset model, and hence a data
source for Data Aware components, and doing so by making direct use of the Firebird API. There is
no middleware involved and the intent is to maximise performance. IBX is intended to provide the
best performance possible when using Firebird from a Pascal program.

Firebird is an SQL database and a knowledge of SQL is generally necessary for all but basic use of
IBX. IBX does not attempt to hide the SQL from the programmer1. Indeed, it gives the programmer
full use of SQL.

The IBX for Lazarus components should behave identically to their Delphi equivalents and many
online tutorials are available on how to use them. An introduction to their use is given below, and
many example programs are also provided.

4.1 Conversion From Delphi IBX

You should be aware of the following issues:

1. The IBX components make use of the TThread class, and, as such require that multi-
threading is enabled. Specifically, in the Linux environment, the “-dUseCThreads” option
must be present in the “Compiler Options->Options->Custom Options” and set for every
Lazarus project that uses them.

2. Prior to FPC 2.6.0, the TIntegerField type may cause problems when porting code from
Delphi to Lazarus.

3. FMTBcd is not yet implemented by the Free Pascal Compiler. IBX for Lazarus thus uses
the TFloatField type for extended floating point (64 bit) fields. This may cause problems
where converting Delphi programs to Lazarus. The recommended approach is to change all

1The exception to this is the TIBTable and TIBStoredProc components. These can be used for simple database
applications without requiring any SQL programming.

17

IBX for Lazarus User Guide

TFmtBcdField types to TIBBcdFields. This will allow Delphi forms to be converted to
Lazarus. However, some of the conversions will not give the correct results. Typically, this
will result in field values that appear to be of the order of several billion when the program is
run. To resolve the problem, delete the field in the IDE Fields editor and then re-create it.
The correct field type will then be used.

Alternatively, all TFmtBcdField fields should be deleted prior to conversion and then
recreated in the IDE.

4.2 IBX in Context

The following diagram attempts to position IBX with respect to other packages. As illustrated the
fbintf package is the provider of the Firebird API and may be both directly access by the user, while
also providing the Firebird API to IBX. IBX is also accessed directly by the user, but also uses the
FCL which is where the TDataset abstract class is located. IBX can make use of the LCL but only
does so when not in console mode and this is only to provide the built-in Login Dialog.

4.3 Component Overview

The following components are installed on the Firebird tab:

TIBDatabase Every project that uses IBX must have at least one TIBDatabase
component. This is usually placed on a data module or the main
form, and represents the connection to the database. Its properties
identify the server on which the database is located, its name or
pathname on that server, the login credentials, and the local
character set when transliteration is required. It can also generate a
login prompt for the user name and password, or support a user
provided login form. See 5.1.

TIBDatabaseInfo This component supports a TIBDatabase and provides read only
access to a database's properties and statistics. See 7.5.

18

Illustration 1: How IBX Relates to other Packages

Firebird Client API

fbintfFCL-DB

LCL
IBX

 IBX Overview

TIBTransaction Every project that uses IBX must have at least one
TIBTransaction component. Firebird is a transaction oriented
database and all operations must take place in the context of a
transaction. Its properties determine the transaction isolation (see
Firebird documentation). A TIBTransaction is typically provided
with the TIBDatabase and linked to it by the TIBDatabase
DefaultTransaction property. See 5.2.

TIBQuery This component is a descendent of TDataset and generates the
dataset from the results of an SQL query (Select statement or a
Stored Procedure that returns a results set). The SQL query used
is given by its SQL property. This can be parameterised with the
values of the parameters set before the query is executed. When
the “active” property is set to true then the query is executed and
the results set returned. When “active” is set to false, the results set
is discarded. The dataset is read only unless its “UpdateObject”
property references a TIBUpdateSQL or a TIBUpdate object.

The TIBQuery's properties must identify the database and the
transaction used for executing the query. See 6.5.

TIBUpdateSQL This component may be referenced from a TIBQuery component
and is used to support updateable queries. It provides SQL
statements to:

• Delete the current row in the results set

• Refresh (from the database) the current row in the results
set

• Update the current row in the database to match the
(modified) values in the database

• Insert a new row into the database.

See 6.6.

TIBUpdate This component may be referenced from a TIBQuery component
and is a more general way to support updateable queries than that
provided by TIBUpdateSQL. While TIBUpdateSQL supports single
SQL statement for Delete, Update or Insert, TIBUpdate provides an
event handler for Update, Insert or Delete together with an
ISQLParams interface providing access to all current and “old” field
values. This gives the programmer complete freedom as to how the
Update, Insert or Delete is performed.

TIBDataSet This is also a TDataset descendent and combines the functionality
of TIBQuery and TIBUpdateSQL into a single component. See 6.7.

Its properties must identify the database and the transaction used

19

IBX for Lazarus User Guide

for executing the query.

You will normally want to use TIBDataset instead of a TIBQuery
and TIBUpdateSQL pair. Alternatively, the latter combination may
be used, for example, when a form uses a TIBQuery to provide a
read only dataset, and a subclassed (inherited) form needs to
update the dataset. The IBUpdateSQL can be added to the
subclassed form to provide the update capability.

TIBStoredProc This component is used to execute a stored procedure (on the
Database Server), and one that does not generate a results set. Its
properties must identify the database and the transaction used for
executing the query. See 6.4.

TIBSQL This component is the basic SQL engine of IBX and is used
internally by TIBQuery, TIBDataset and TIBStoredProc to perform
SQL queries. It can be used directly by the programmer to
effectively implement embedded SQL statements.

Its properties must identify the database and the transaction used
for executing the query.

TIBSQL is essentially an object oriented encapsulation of the
Firebird DSQL API. See 6.5.

TIBEvents One very useful feature of the Firebird Database is its ability to
generate asynchronous “events” from a Stored Procedure or
Trigger and which can then be acted upon by any active client that
is listening on the event. Database clients can thus act immediately
on changes made by another client without needing to regularly
query the database.

The TIBEvents component is used to register for and receive
Firebird Events. Up to 16 events can be waited upon
simultaneously. The name of each event to be listened to is set in
the component's Events property. If you need to wait on more than
16 events, then additional TIBEvents components can be used.

The event notification is asynchronous and takes place at the end
of the transaction in which the event was generated. A separate
thread is used by TIBEvents to wait on the event notification. When
the event occurs it calls the “OnEventAlert” event handler to report
which event has been received. Note that the event handler is run
in the context of the main thread and hence there is no need to
worry about thread synchronisation. See 5.3.

TIBSQLMonitor This component supports debugging and performance tuning by
allowing one process to monitor the SQL function calls in the same
or another process (on the same system).

The TIBDatabase trace flags determine which function calls can be
traced with respect to its database connection. However, a process

20

 IBX Overview

only starts to broadcast its function calls after an explicit call to the
IBSQLMonitor.EnableMonitoring procedure, and stops after a call
to IBSQLMonitor.DisableMonitoring.

To receive SQL Function call traces, you need to place a
TIBSQLMonitor component on your form. The properties of this
component can be set to filter the SQL function calls to what you
are interested in. The OnSQL event handler is used to receive and
process SQL function call trace events. See 7.4.

Note that the Windows implementation allows any process to monitor the
SQL Trace events broadcast by another. The Linux implementation
restricts monitoring to processes owned by the same user.

TIBTable This component provides a simple TDataset descendent where the
contents of the dataset are the same as a named Database Table.
This component is useful for very simple applications, but
TIBDataset should normally be preferred for most applications. It
also supports Master/Detail relationships between linked tables.
See 6.3.

TIBExtract This component allows the extract of database metadata. The
component is intended to be compliant with all Firebird extensions
to the DDL up to and including Firebird 3. See 7.6.

TIBBatchMove This component supports a table to table copy from a source IBX
dataset to a TIBTable.

TIBXScript This component is used to run an SQL script in the specified file or
stream. The text is parsed into SQL statements which are executed
in turn. The intention is to be ISQL compatible but with extensions.
See 7.1.

The Firebird Admin tab provides the Service API components. These support various server side
functions including user password maintenance and database backup/restore (see 10.1).

4.4 Databases and Transactions

IBX always access a database through a “connection” whether it is a local database or a remote
one. Data is the read and written in the context of a transaction. Transactions exist:

• to isolate users from each other,
• to allow a user to see a consistent view of the data independent of what other users are

doing,
• to allow users to lock data for change and to control whether other users wait on such

locked data, and
• to provide a well defined transaction start and end where, at a transaction end, any

changes made to the data are either committed and made available for other users to see,
or are abandoned and the data rolled back to where it was before the transaction started.

21

IBX for Lazarus User Guide

Firebird is a transaction oriented database and all interactions with the database have to take place
in the context of a transaction. Firebird allows multiple independent transactions to take place
simultaneously and provides several possible isolation strategies in order to avoid the transactions
interfering with each other.

At least one TIBDatabase (see 5.1) and one TIBTransaction (see 5.2) component are required for
an application that uses IBX. These are normally placed on the project's main form or on a data
module. The TIBDatabase component represents the connection to a database, and it's rare than a
project needs more than one such component (e.g. if you need to support simultaneous
connections to two or more databases).

The TIBDatabase component's properties identify the location of the database and provide the
logon parameters. It can also use a built in dialog to prompt for a user name/password or use an
application provided dialog. A default transaction is also identified in the TIBDatabase properties.
Datasets linked to this database automatically use the default transaction unless this is explicitly
overridden in the dataset's properties.

TIBTransaction represents a transaction, and, you can have as many TIBTransaction
components as necessary. A TIBTransaction is normally linked to single database (TIBDatabase)
but can be linked to multiple databases in order to synchronise updates to them.

4.5 Datasets

The TDataset model is integral to the managing the relationship between Data Aware controls and
database tables in both Lazarus and Delphi. A TDataset derived component is used, at its
simplest, to represent the data in a single database table. Data aware controls, such as TDBEdit
can then be linked to a single (text) column in the dataset and allow the data in the current row of
that column to be both displayed and edited. A control such as TDBGrid allows multiple rows to be
shown together and as a table.

An example of this is shown in Illustration 2. This is a snapshot from the example application (see
the “ibx/examples/employee” directory) and illustrates the use of TDBGrid to show a table of
database data.

4.5.1 Datasets and Transactions

Each dataset is linked to a single transaction and all data reads and writes using that dataset take
place in the context of this transaction.

In a simple application, you only need to include a single TIBTransaction component with your
application.

• In the most basic case, the first dataset to be activated implicitly starts the transaction (as
long as its AutoActivateTransaction property is set) and, if, when it is deactivated, no
other datasets are active, it will automatically commit the transaction. When the database is
closed, the default action of the TIBTransaction is to commit all changes.

• In a more advanced application (such as the example application), you will want more
control over committing or rolling back the transaction and TIBTransaction provides
methods to start a transaction and to commit it or roll it back. In this case, it is usually
advisable to explicitly start each transaction rather than relying on implicit starts as this
avoids a dataset unexpectedly committing a transaction when it is closed. Commit and
Rollback are then always under programmatic control.

22

 IBX Overview

Note that when a transaction ends, all datasets referencing the transaction are automatically deactivated. A
new transaction has to be started and those datasets reactivated if they are to continue to be populated.

However, it is possible to save changes (commit the transaction) and to not close the datasets.
This is by using the TIBTransaction.CommitRetaining method. This commits the transaction
whilst retaining the transaction context. The datasets can thus remain open. The downside of using
this function is that in a multi-user database, the datasets only pick up changes made by other
users when they are closed and re-opened.

4.5.2 Single Table Datasets

While a single table may be used for simple applications, the dataset is more normally the result of
a database query where the result is one or more rows. In some cases, the dataset may just
consist of a single row where it is supporting a form that edit's that row's contents. This avoids the
overhead of reading many rows from a database when only a single one is needed.

In IBX, the TIBTable component is a TDataset descendent that allows a single table to be named
and, on your behalf, it does all that is necessary to read the rows in the table and update them as
required. It does this by automatically generating the SQL Statements needed to access and
update the database. However, this is a limited approach, and does not allow the full power of SQL
to be exploited.

4.5.3 SQL Defined Datasets

IBX also provides TIBQuery. This is also a TDataset descendent but reads a dataset that is the
result of an SQL Select Query specified by the programmer either a design to runtime. The query
can join multiple tables and be limited to just the rows required. It is much more powerful than just
accessing a single table.

23

Illustration 2: Employee List from the examples/employee application

IBX for Lazarus User Guide

If you need also to update the database after editing a TIBQuery results set, another component
(TIBUpdateSQL) can be linked to the TIBQuery to provide the SQL Statement necessary to Update,
Insert or Delete rows, or to refresh rows that may have changed.

More generally, TIBDataset is a component that allows you to specify the Select, Update, Insert,
Delete and Refresh queries in one component.

4.6 Examples

The ibx/example/employee example application provides an example of the use of the
TIBDatabase, TIBTransaction, TIBQuery and TIBDataset components supporting data aware
components for viewing and editing data from a database.

24

 The Database Access Components

5
The Database Access Components

The IBX components are presented here in three main groups. This chapter is concerned with the
“Database Access” set of components. Chapter 6 is concerned with the dataset components, while
chapter 7 presents support components.

The IBX Database Access components are simply those components that are little more than
“wrappers for interfaces exported by the fbintf package, and are:

• TIBDatabase – encapsulates the IAttachment interface
• TIBTransaction – encapsulates the ITransaction interface
• TIBEvent – encapsulates the IEvents interface
• TIBSQL – encapsulates the IStatement interface.

The Firebird Pascal API describes each of these interfaces in detail and how to use them.
However, when using, you should use the methods and properties provided by the component in
preference to similar methods and properties provided by the underlying interface, except as
described below.

5.1 TIBDatabase

This is a non-visual component and a TCustomConnection descendent. It provides the link between
the database connection as viewed by the TDataset model and the Firebird database connection.
The following properties are highlighted here:

Connected Set this property to true to connect to a database and to false to
disconnect.

AllowStreamConnected This property exists to avoid a conflict between connecting to a
database at design time and automatically connecting at run
time. (see 5.1.8).

25

IBX for Lazarus User Guide

CreateIfNotExists New in IBX2: If true, and an attempt is made to connect to a
database that does not exist, then the database is created, if
possible. See also the OnCreateDatabase event.

DatabaseName The pathname to the database includes the server name. The
format varies depending on the connection protocol used and
the way pathnames are expressed on the target system. See
the Firebird documentation for more information.

DefaultTransaction Reference to the default transaction for the database. This is
purely a convention. When a dataset is linked to a TIBDatabase,
it's default transaction is assigned as the dataset's transaction if
none is already specified.

IdleTimer If non-zero, this is the time in milliseconds between successive
polls for database activity. If no activity has been detected
between two successive polls then the database is automatically
disconnected. Can be used to timeout idle connections if
needed.

LoginPrompt When true, the a login dialog is shown to the user to confirm the
database user name (as given in the Params) and to enter a
password. If the OnLogin event handler is defined then this is
called and is expected to generate the login dialog. Otherwise,
the built-in login dialog is used.

Params This is a list of parameter values to be used in the Database
Parameter Block (DPB) at connect time. These are in
“keyword=” format. See below.

SQLDialect The default SQL dialect to be used for the connection (3 is
recommended). See Firebird Documentation.

SQLHourGlass If true, then the cursor is changed to an Hour Glass (or
equivalent) during calls to the database server.

UseSystemDefaultCodePage If true, then the system default code page is used as the
connection default character set. Not recommended for Lazarus
programs where UTF8 is assumed by many LCL functions.

5.1.1.1 Parameter Keywords

The parameters are best edited at design time using the database dialog editor (double click on the
TIBDatabase component icon, once it has been placed on your form). The parameter names
available include:

user_name Login user name

26

 The Database Access Components

password Login password (use of this parameter to save a password at dedign tiem
is not recommended).

lc_ctype Name of the connection default character set (e.g. UTF8). UTF8 is
recommended for Lazarus programs.

5.1.2 Highlighted Events

TIBDatabase events are typically used to react to changes in the connection state. These include:

AfterConnect Called after a connection has been successfully established. A good place
to start the first transaction and open datasets.

AfterDisconnect Called after a connection has been disconnected.

BeforeConnect Called before an attempt is made to connect to a database. Could be used
to update the connection parameters, database name, etc.

BeforeDisconnect Called before an attempt is made to disconnect from a database.

OnCreateDatabase Called after a database has been successfully created. Could be used to
run a DDL script (e.g. using TIBXScript – see 7.1) to initialise the
database.

OnIdleTimer Called after an idle timer has disconnected the database.

OnLogin Called if LoginPrompt is true and maybe used to complete the login
parameters by prompting the user. If not set and LoginPrompt is true then
the built in login dialog is used.

5.1.3 Connecting to a Database

The recommended approach is:

• To set AllowStreamedConnect to false
• Do not include a password in the parameters
• Use the built-in or a user defined login prompt to confirm the user name and enter the

password.

The following code is recommended for setting the connected property to true. This may be part of
an OnShow handler for the main form or when otherwise required:

27

IBX for Lazarus User Guide

 repeat
 try
 IBDatabase1.Connected := true;
 except
 on E:EIBClientError do
 begin
 Close;
 Exit
 end;
 On E:Exception do
 MessageDlg(E.Message,mtError,[mbOK],0);
 end;
 until IBDatabase1.Connected;

An example of this code in use may be found in “ibx/example/employee”. The purpose of the
above is to trap and report errors, such as mis-typed passwords whilst allowing the user to click on
cancel and exit through a “client error”.

Note: you will need to add the “IB” unit to your units list in order for the above to compile.

5.1.4 Database Disconnect

You can disconnect from a database at any time by setting the Connected property to false.
However, it is not necessary to explicitly disconnect before a program terminates as this is
performed automatically when the TIBDatabase component is destroyed.

5.1.5 Creating a new Database

The CreateDatabase method can be used to explicitly create a new database, alternatively, if the
CreateIfNotExists property is set to true then a new database is automatically created if the
connection attempt fails with a database not found error.

The DatabaseName property is used to determine the location of the database and the Params
property provides the create parameters, including the database owner (user_name), and the
database default character set (lc_ctype). The SQLDialect property determines the database SQL
Dialect.

Alternatively, the CreateDatabase method may be called with a “CREATE DATABASE” sql
statement. In this case, the sql statement is the sole source of the create parameters.

Once the database has been created, the OnCreateDatabase event is called. An SQL script may
now be run to initialise the database, (e.g.) by using TIBXScript (see 7.1).

5.1.6 Dropping a Database

Once a connection has been established, it is possible to drop (disconnect and delete) a database
using the DropDatabase method. This will delete the original database file, provided that the logged
in user has sufficient privilege to do this operation.

5.1.7 Using the Attachment Interface

The TIBDatabase component also exposes the underlying IAttachment interface as the public
property: Attachment. This can be used for embedded SQL. For example,

var employees: integer;
begin
 employees := IBDatabase1.Attachment.OpenCursorAtStart(
 'Select count(*) From Employees').AsInteger;

28

 The Database Access Components

gets the current number of rows in the employee table. Use of the IAttachment interface is
described in the Firebird Pascal API Guide.

5.1.8 Using the AllowStreamConnected Property

In order to get the lists of tables and fields and to test the SQL statements, property editors (see
6.5.3) need a connection to a development version of your database. They use the dataset's
TIBDatabase to do this and may set its connected property to true in order to achieve this.
However, when the form is saved, this can also result in the connected property being saved in the
form as “true”.

The result is that when the compiled program is run, the TIBDatabase component is loaded with a
connected property set to true and is then in its “streamed connected” state. This is it connects to
the database as soon as the component finishes loading. This may be what you want – which is
fine. But often this is not desirable.

When a TIBDatabase connects to the database as soon as the component finishes loading, it
causes problems with error handling. That is exceptions cannot be caught and a simple error, such
as mistyping a password can cause an ungraceful exit; as far as the user is concerned the
program has crashed.

To avoid this, it is better to set the connected property explicitly, perhaps once the main form has
finished loading and in its OnShow event handler (see 5.1.3). It is then possible to wrap the
“connected := true” with an exception handler.

This can be ensured by setting the TIBDatabase AllowStreamedConnected property to false. This
prevents the component entering the “streamed connected” state even if the connected property is
set to true when the form was saved.

5.2 TIBTransaction

This non-visual component is a wrapper for the ITransaction interface. Its role is to:

• Provide a component that represents a transaction
• Provide a means to specify transaction parameters at design time.
• Allow design time references to be established between datasets, transactions and

databases.
• Provide a centralised point for event handling when transactions are started or closed, or to

react to state changes in datasets linked to transactions (e.g. to indicate data changes).

The simplest way to set transaction parameters at design time is to use the transaction editor. This
is accessed by double clicking on the TIBTransaction component icon, once it has been placed
on your form.

5.2.1 Highlighted Properties

Active Set to true to start a transaction.

Returns true when a transaction is active. Set to false to close a
transaction and rollback. When set at design time will cause the
transaction to be started as soon as it has loaded.

29

IBX for Lazarus User Guide

DefaultAction Set to taCommit or taRollback. Determines the default closure of the
transaction if implicitly closed.

DefaultDatabase A reference to the default TIBDatabase for the transaction.

IdleTimer If non-zero, this is the time in milliseconds between successive polls for
transaction activity. If no activity has been detected between two
successive polls then the transaction is automatically closed. Can be
used to timeout idle transactions if needed.

Params This is a list of parameter values to be used in the Transaction Parameter
Block (TPB) at connect time. These are in “keyword=” format. See below

5.2.2 Events

AfterDelete Called after a record has been deleted in a dataset linked to the
transaction.

AfterEdit Called after a dataset linked to the transaction has entered the edit
state.

AfterExecQuery Called after a TIBSQL component linked to the transaction has
executed a query.

AfterInsert Called after a dataset linked to the transaction has entered the insert
state.

AfterPost Called after a dataset linked to the transaction has posted changes.

AfterTransactionEnd Called after the transaction has been closed.

BeforeTransactionEnd Called before the transaction is closed.

OnIdleTimer Called after the transaction has been closed due to lack of activity.

OnStartTransaction Called after a transaction has been started.

5.2.3 Transactions and Databases

In most cases, a transaction is linked to only a single database (the DefaultDatabase) and the
transaction takes place in the context of the associated database connection. However, a
transaction can be linked to more than one database.

Additional databases must be added at run time using the AddDatabase method and before the
transaction is started. They can also be removed using the RemoveDatabase method. The public
property Databases can be used to inspect the current set of databases linked to the transaction.

30

 The Database Access Components

When more than one database has been added to a transaction, the transaction becomes a mult-
database transaction co-ordinating updates over the set of databases.

5.2.4 Starting a Transaction

A transaction can either be started implicitly when (e.g.) a dataset is opened or explicitly by setting
the Active property to true, or by calling the StartTransaction method.

Note: From IBX2 onwards, at run time, implicit start has to be enabled using the dataset's
AllowAutoActivateTransaction property.

Implicit start occurs when a dataset is opened (active property set to true) and the linked
transaction has not been started. In this case, the transaction is automatically started when the
dataset is opened. It can also occur when the transaction's Active property is set at design time
and immediately after the form on which the transaction component has been placed, completes
loading.

An explicit transaction start can be performed at any time while the linked database is connected.
However, an exception is raised if the transaction is already started. The recommended code is:

IBTransaction1.Active := true;

Explicit start of transactions is recommended for all but the most simple applications as this allows
better control over error handling and is part of a properly thought out use of transactions.

5.2.5 Transaction Parameters

The following keywords may be given as transaction parameters. Except as where indicated, the
parameters have no value associated with them and hence are not followed by an “=” sign.
Transaction parameters can also be set using the Transaction Editor (see 5.2.6).

consistency Table-locking transaction model

concurrency High throughput, high concurrency transaction with acceptable
consistency; use of this parameter takes full advantage of the
Firebird multi-generational transaction model [Default]

shared Concurrent, shared access of a specified table among all
transactions; use in conjunction with _lock_read and lock_write to
establish the lock option [Default]

protected Concurrent, restricted access of a specified table; use in
conjunction with lock_read and lock_write to establish the lock
option

exclusive Same as “protected”

wait Lock resolution specifies that the transaction is to wait until locked
resources are released before retrying an operation [Default]

31

IBX for Lazarus User Guide

nowait Lock resolution specifies that the transaction is not to wait for
locks to be released, but instead, a lock conflict error should be
returned immediately

read Read-only access mode that allows a transaction only to select
data from tables

write Read-write access mode of that allows a transaction to select,
insert, update, and delete table data [Default]

lock_read Read-only access of a specified table. Use in conjunction with
shared, protected, and exclusive to establish the lock option.

Table name given as parameter value.

lock_write Read-write access of a specified table. Use in conjunction with
shared, protected, and exclusive to establish the lock option
[Default].

Table name given as parameter value.

verb_time This is poorly documented and its use uncertain. Do not use
unless you know how it works.

commit_time This is poorly documented and its use uncertain. Do not use
unless you know how it works.

ignore_limbo Do not wait for Limbo Transactions. Used for a garbage collector
thread.

read_committed High throughput, high concurrency transaction that can read
changes committed by other concurrent transactions. Use of this
parameter takes full advantage of the Firebird multi-generational
transaction model.

autocommit Server performed auto-commit of each change.

rec_version Enables a “read_committed” transaction to read the most recently
committed version of a record even if other, uncommitted versions
are pending.

no_rec_version Enables a “read_committed” transaction to read only the latest
committed version of a record. If an uncommitted version of a
record is pending and “wait” is also specified, then the transaction
waits for the pending record to be committed or rolled back before
proceeding. Otherwise, a lock conflict error is reported at once.

restart_requests This is poorly documented and its use uncertain. Do not use
unless you know how it works.

32

 The Database Access Components

no_auto_undo With no auto undo, the transaction refrains from keeping the log
that is normally used to undo changes in the event of a rollback.
Should the transaction be rolled back after all, other transactions
will pick up the garbage (eventually). This option can be useful for
massive insertions that don't need to be rolled back. For
transactions that don't perform any mutations, no auto undo
makes no difference at all.

lock_timeout This takes a non-negative integer as the parameter value,
prescribing the maximum number of seconds that the transaction
should wait when a lock conflict occurs. If the the waiting time has
passed and the lock has still not been released, an error is
generated.

The following is a suggested parameter list for a typical read/write transaction:

read_committed
rec_version
nowait

5.2.6 The Transaction Editor

The transaction editor is opened at design time by double-clicking on the TIBTransaction
component once it has been placed on a form.

This editor allows the transaction parameters to be set using one of the predefined options listed
on the left. The result of selecting “Read Committed” is to set the Params property to that given in
the Settings listbox.

5.2.7 Closing a Transaction

A transaction can either be closed implicitly with the default closure (commit or rollback) or
explicitly.

Implicit closure occurs:

• When the database connection is closed.

33

Illustration 3: Transaction Editor

IBX for Lazarus User Guide

• When the transaction idle timer expires.

• When a dataset that implicitly started a transaction closes and there are no other open
datasets that are linked to the transaction.

• When the transaction's active property is set to false.

Explicit closure uses the Commit or Rollback methods and may be called at any time on an active
transaction.

When a transaction is closed, all linked datasets that are still opened are closed implicitly and their
data discarded.

Note: it is important to consider how your datasets react to transaction closure. See 6.6.5.

5.2.8 Retaining Transaction State after Closure

When explicitly closed, it is possible to retain the transaction state after a transaction has been
closed by using the CommitRetaining or RollbackRetaining methods.

In either case, the effect is to immediately restart the transaction after the closure. As the database
engine retains transaction state, there is no need for implicit closure of linked datasets. They thus
remain open and there is no need to refresh their data.

The downside of using CommitRetaining or RollbackRetaining is that in a multi-user database, the
datasets only pick up changes made by other users when they are closed and re-opened.

5.3 TIBEvent

This non-visual component is a wrapper for the IEvents interface. Its role is to:

• Provide a component that represents an event handler
• Provide a means to specify the events on which an application is waiting for at design time.

5.3.1 Highlighted Properties

Database A reference to the TIBDatabase for which this component is the event
handler

Events A string list containing the names of the current set of events for which the
application wants to be alerted.

Registered When true, the event handler is active and waiting for events. When set at
design time, the event handler becomes active as soon as the linked
database is connected.

5.3.2 Events

OnEventAlert This event handler is called whenever an event alert is received from the

34

 The Database Access Components

database for one of the monitor events.

5.3.3 Using Events

Events are raised by the database engine when a POST_EVENT statement is executed by a
stored procedure or Trigger. The POST_EVENT statement also names the event. For example:

POST_EVENT 'MYEVENT';

Once the transaction, in which the trigger or stored procedure runs under, has been committed, the
event is sent to all connected clients that have registered to receive the event. These clients may
then react to the event. For example, by refreshing affected datasets. This is particularly useful in
multi-user databases as it provides a mechanism by which changes made by one user can then be
seen by other users looking at the same data and as soon as the change is committed.

The names of the events an application is waiting for are typically defined at design time and the
Registered property set to true. Then, whenever the event is signalled the OnEventAlert event
handler is called. It is up to the application to then decide what to do.

Note: the event handler is called asynchronously and may run at any time. However, it will run in the context
of the application main thread and thread synchonisation is not required.

The event handler is called once for each named event and reports the number of times the event
has been signalled. This can be used to avoid reacting to duplicate events.

5.4 TIBSQL

This is a non-visual component and is a wrapper for the IStatement interface. It is used by the
dataset components to execute SQL statements and to access the results of select queries. It can
also be used directly by applications in which case, its role is to:

• Provide a component that represents an SQL Statement
• Provide a means to specify statement SQL at design time
• Allow design time references to be established between an SQL Statement, the transaction

used to execute the statement and the database connection.

IBX2 supports embedded SQL through the TIBDatabase.Attachment interface (see 5.1.7).
However, you may still prefer to specify a statement at design time and as a component by using
TIBSQL.

5.4.1 Highlighted Published Properties

Database A reference to the TIBDatabase to which the SQL Statement
applies

GenerateParamNames If true then positional parameters are replaced by parameter
names in the format “IBXParamnnn” where nnn represents the
zero based position number. Most users may safely ignore this
parameter.

35

IBX for Lazarus User Guide

UniqueParamNames Ignored in IBX2. Uniqueness of parameter names is determined
automatically.

GoToFirstRecordOnExecute When true and the SQL Statement is a select query, the cursor is
positioned at the first record, if any, after the query is executed.

ParamCheck Default true. The SQL Statement is parsed for named
parameters. If no parameters or positional parameters are used
then this may be set to false and the parsing overhead avoided.

SQL The SQL Statement as a multi-line string list.

Transaction A Reference to the transaction used to execute the SQL
Statement. Must be active before the query is executed
otherwise an exception is raised.

5.4.2 Using TIBSQL

TIBSQL can be used to specify an SQL Statement at design time and to link it to the transaction
used to execute it and the database connection to which it applies. However, the SQL Statement
still has to be executed and used programmatically. TIBSQL cannot be used as a data source for
data aware controls.

5.4.2.1 Executing a Stored Procedure

For example, if a TIBSQL component (e.g. named IBSQL1) contains the SQL Statement:

Execute Procedure MyProc :Param1;

Then this could be executed using:

with IBSQL1 do
begin
 Transaction.Active := true; {make sure transaction active}
 ParamByName('MyProc').AsInteger := 1; {assume integer parameter}
 ExecQuery;
end;

In the above, the query is first prepared and then the parameter accessed by name and set to the
value of one. The query is then executed.

Note that parameters can always be accessed by position using the Params public property, even when they
also have a name. If more than one parameter has the same name, then setting a parameter by name
applies the same value to all parameters with the same name. The syntax for parameter names is the same
as used for the Firebird Pascal API IStatement interface (see the Firebird Pascal API Guide).

Parameter names are parsed and applied by the fbinf package (see the Firebird Pascal API section
6.1.1 for further details).

5.4.2.2 A Stored Procedure that returns Output

For example, if the store procedure is defined as:

36

 The Database Access Components

Create Procedure MyProc(aParameter Integer)
 Returns (SomeText VarChar(64))
As ...

Then executing the query should return results. In the above, these are simply accessed by name
using the FieldByName method. Alternatively, they can be accessed by position using the Fields
property. For example:

with IBSQL1 do
begin
 Transaction.Active := true;
 ParamByName('MyProc').AsInteger := 1; {assume integer parameter}
 ExecQuery;
 writeln('Some Text = ',FieldByName('SomeText').AsString);
end;

Field Names are generally the same as the column or alias names given in the SQL Statement.
However, there are exceptions. See the Firebird Pascal API Guide section 6.1.2 for further
information.

Note: Firebird handles INSERT … RETURNING and UPDATE … RETURNING in the same way as stored
procedures. Returned values are similarly accessed in the same way as stored procedure output
parameters i.e. using the FieldByName method.

5.4.2.3 Executing a Select Statement

If the TIBSQL statement is a Select SQL Statement then it may return many rows of output. It may
optionally also have input parameters similar to any other SQL Statement.

When the statement is executed, a uni-directional cursor is returned to the results set. The fields in
each row of the results set may be accessed using the FieldByName method. Alternatively, they
can be accessed by position using the Fields property. You can scroll forwards to the next row by
calling the Next method. Once all rows have been returned, the EOF property is set to true. The
query should be explicit closed in order to free the results set.

Note: when a cursor is first opened, the cursor is placed on the first row unless the
GoToFirstRecordOnExecute property is set to false. In which case, the Next method must be called prior to
accessing the first row.

For example, if the database is the example “employee” database and the SQL Statement is:

Select EMP_NO,FULL_NAME From EMPLOYEES Order by 2;

then the following will execute the query and write out the results, one line at a time.

with IBSQL1 do
begin
 Transaction.Active := true;
 ExecQuery;
 while not EOF do
 begin
 write('EMP_NO = ',Fields[0].AsString);
 writeln(': Full Name = ',Fields[1].AsString);
 Next;
 end;
 Close;
end;

37

IBX for Lazarus User Guide

5.4.3 The TIBSQL SQL Property Editor

The TIBSQL component has its own property editor for editing the SQL query property.

The property editor uses a SynEdit control to both display (using SQL syntax highlighting) and edit
the SQL Statement. Any DDL or DML SQL statement may be given. The above example illustrates
the use of an Insert statement.

Provided that the TIBSQL component is linked (at design time) to a valid database then:

• The SQL syntax can be tested using the “Test” button. When the “Test” button is clicked, the
statement is passed to the Firebird Server for validation.

• The SQL Property Editor can also generate an initial SQL Statement which can then be
edited by the user. The left hand tabs and panel are used to select the type and
composition of the generated SQL statement.

In the above example, the Insert tab is selected implying that an Insert Statement is to be
generated. The panel will then show an appropriate set of options, starting with the table name.
The drop down list shows all tables in the database and the required table selected. The drop
down list also uses auto-complete to simplify the selection with large numbers of tables in the
database.

The available columns are then analysed into:

38

Illustration 4: TIBSQL SQL Property Editor

 The Database Access Components

• Primary Keys (for the table)

• Identity Columns (Firebird 3 only – see 6.6.8)

• Computed By columns (i.e. columns computed by the server from other columns in the
same row).

• Updateable Columns (i.e. all other columns).

By default all columns are selected. However, the mouse may be used to deselect the columns not
required for the Insert Statement by clicking on the tick box.

When the “Generate SQL” button is clicked an Insert SQL Statement is generated:

• The selected primary keys are listed first except for those also selected as Identity Columns

• The selected Updateable columns then comprise the remainder of the insert statement.

• The selected Identity and Computed By columns are then listed in the RETURNING clause
and, after the statement has been executed, their updated values can hence be retrieved
from the TIBSQL.Fields property, or by using the FieldByName function (as discussed
above for select queries).

Generation of Select, Update and Delete SQL statements follow similar rules, except that Identity
columns are only relevant to Insert SQL Statements.

The generation of execute statements depends on the type of stored procedure (see Illustration 8).

From Firebird 3 onwards, SQL Property Editors now include a "Package Name" drop down box to
allow selection of a Firebird 3 Package from which a stored procedure can be selected. With no
package name selected, non-package stored procedures are listed, otherwise, the list is restricted
to stored procedures in the selected package. In the illustration, the example package 'FB$OUT' is
selected and then the PUT_LINE stored procedure from this package.

Clicking on the “Generate SQL” key will generate an Execute Procedure SQL statement with the
input parameters specified for the procedure. Note that while these are shown in the panel, the
input parameters are not selectable (a requirement of the SQL syntax).

Similarly with output parameters. These are not normally selectable and are not included in the
generated SQL. However, they can be read after the statement has been executed; their values
can be retrieved from the TIBSQL.Fields property, or by using the FieldByName function (as
discussed above for select queries).

The exception is for stored procedures that return multiple rows. In this case, a select statement is
generated and the output parameters are selectable (see 5.4.2.3).

39

IBX for Lazarus User Guide

40

Illustration 5: Using the TIBSQL Property Editor to Generate Execute Statements

 The DataSet Components

6
The DataSet Components

The TDataset model introduced with Delphi and re-implemented by Free Pascal provides a
common model for accessing datasets and is used by many Lazarus applications. Data aware
controls can be placed on a Lazarus form and linked to a dataset via a TDataSource. In most
cases, they also link, by name, to a single field2 in the dataset. The focus can be placed on a single
row in the dataset, and changes made to data in that row by editing the data present in one or
more data aware controls. The changes are saved to the underlying database by “posting” the
change (i.e. calling the TDataset.Post method). A Cancel method also exists to undo unposted
changes.

TDataset is an abstract class which provides a common ancestor for many different types of
dataset and databases. IBX provides a set of TDataset subclasses in order to provide efficient
SQL based access to data held in Firebird databases. In addition to defining the common view of a
dataset, TDataset also defines common methods for selecting (locate) a specific row in the
dataset and moving backwards and forwards through the dataset (First, Last, Next, Prior
and MoveBy).

IBX defines an internal class – TIBCustomDataset – which handles most of the details of providing
access to a Firebird sourced dataset. However, this is not itself made directly visible and instead a
set of derived classes are provided on the Firebird palette as the IBX Datasets.

6.1 IBX Datasets

The IBX Datasets available for use are:

• TIBTable
• TIBStoredProc
• TIBQuery
• TIBDataset

2A dataset is composed or one or more rows of data, organised into columns. A Field is said to be the intersection of a
row and a column and is known by the column name. Its value is taken from the current row.

41

IBX for Lazarus User Guide

In support of TIBQuery, TIBUpdateSQL provides a means to add or override the SQL used to
modify, insert, delete or refresh a dataset.

6.2 Common Concepts

6.2.1 Common Properties

All the IBX TDataset subclasses support the following properties:

Active At run time, set to true to open the dataset and to false in
order to close the dataset. If set at design time then the
dataset is opened as soon as the form it is on has completed
loading.

AllowAutoActivateTransaction If this property is set to true then activating the dataset
(setting its active property to true) will automatically start the
dataset's transaction.

AutoCalcFields When true, calculated fields determined by table lookup are
automatically re-calculated each time the current row
changes. This is inherited behaviour from TDataset.

AutoCommit May be set to “disabled” (default) or to “CommitRetaining”. In
the latter case whenever a row is deleted or posted, the
dataset's transaction is closed with “CommitRetaining”
thereby saving the change to the database whilst retaining
the transaction context and allowing the dataset to stay
open.

BufferChunks Important Performance Parameter: This parameter
determines the size by which the internal buffer allocation
pool is increased every time it becomes fully used. The
default is 1000 rows.

IBX will eventually cache the complete dataset in internal
buffers. If the dataset is known to only ever have a few rows
then BufferChunks can be set to a small number (e.g. 10 if
the number of rows is typically less than 10) and the memory
footprint is reduced.

On the other hand, if the number of rows is large (e.g.
100,000) then setting the BufferChunks to a larger figure
(e.g. 25000) avoids a too frequent reallocation of the buffer
pool as the dataset is read in. However, the figure should be
chosen carefully to avoid a large number of unused buffers
once the dataset has been read in. In some cases, it may
even be appropriate to determine this figure at run time by
first querying the database to return a count of the number of
rows in the dataset and then setting BufferChunks just
before the dataset is opened.

42

 The DataSet Components

CachedUpdates If true then updates are held locally instead of being written
to the database, when changes are posted. Only when the
ApplyUpdates method is called are the changes written to
the database. The CancelUpdates method can be used to
roll back all changes to the last time ApplyUpdates was
called.

This performs a form of Commit/Rollback without having to
write data to the database itself.

Database A reference to the TIBDatabase managing the connection to
the database used for this dataset.

DatasetCloseAction Set to “DiscardChanges” (default) or “SaveChanges”. This
determines how the dataset handles a modified but un
posted row when the dataset is closed. If “SaveChanges” is
selected then the row is posted before closing the dataset.
Otherwise, the changes are silently discarded.

Transaction A reference to the transaction under which the dataset is
read from the database and updates are applied.

Unidirectional If true then the dataset can only be scrolled forwards. Avoids
the need to create and maintain a large internal buffer pool
(see BufferChunks above).

6.2.2 Common Events

Event handlers may be defined for events trigger before and after the dataset is opened and
closed, and before and after rows are inserted, deleted and posted. Similarly for entering the Edit
state and cancelling changes, and before and after a transaction end.

BeforeOpen This is one of the most important event handlers and fires
after the dataset Active property is set to true but before it is
opened. If the select query that defines the dataset has
parameters, this is a good place to set the parameter values.

This event handler can also be used to activate datasets that
should be open before this one is opened3.

AfterOpen This event handler can be used to locate the dataset on a
specific record. It is also a good place to open datasets that
depend on this dataset e.g. in a master/detail relationship.

3When datasets are organised into a dependency hierarchy, if the event handers are set up correctly, only the top level
dataset needs to be explicitly activated. The remainder are then opened in sequence as determined by the event
handlers.

43

IBX for Lazarus User Guide

BeforeClose Typically used to ensure that datasets that must be closed
before this one are closed. e.g. in a master/detail
relationship.

AfterClose Typically used to close datasets that no longer need to be
open once this dataset has closed.

BeforeEdit Raise an exception here if the row should not be edited.

AfterEdit This handler can be used to set some visual indication that
the row is now in the edit state.

BeforeInsert Raise an exception here if the row should not be inserted at
this time

AfterInsert A good place to set initial values for a newly inserted row.

BeforeDelete Raise an exception here if the row should not be deleted.

AfterDelete Could be used to give some visual indication that there are
pending changes to be committed (AutoCommit off).

BeforeCancel Raise an exception here if the changes should not be
cancelled.

AfterCancel This handler can be used to reset the visual indication that
the row is in the edit state.

BeforePost Raise an exception here if the changes should not be
posted, perhaps after validation.

May also be used to set field values when the field is not
managed by a data aware control.

AfterPost Could be used to give some visual indication that there are
pending changes to be committed (AutoCommit off).

BeforeTransactionEnd Raise an exception here if the transaction should not be
completed at this time.

AfterTransactionEnd Could be used to reset the visual indication that there are
pending changes to be committed

OnCalcFields A TDataset can include additional fields to those retrieved
from the database and which are calculated on a per row
basis. This event handler is called each time the dataset is
scrolled and a new row becomes current. This is where the
calculated fields should be refreshed.

44

 The DataSet Components

BeforeScroll Called before changing to a different row. Raise an
exception here if the row should not be changed.

AfterScroll Called after changing to a different row. Could be used to
update controls from field values when the controls are not
data aware.

6.2.3 Exception Handling

An IBX dataset provides several error handling events including OnDeleteError, OnEditError,
OnPostError. This may be used to handle database generated exceptions on a per dataset basis.
However, it should be noted that all database engine exceptions are raised as EIBInterBaseError.
A single centralised exception handler set up using TApplication.AddOnExceptionHandler and
which reports EIBInterBaseError exceptions appropriately may be a more efficient approach.

6.2.4 Character Sets and Code Pages

Firebird text fields always belong to one of the supported character sets (e.g. UTF8). From FPC
3.0.0, Pascal AnsiStrings have a code page attribute that identifies the character set used for the
string. IBX is designed to ensure that text field character sets and AnsiString code pages are
always consistent and to transliterate if necessary when transferring data to and from text fields in
a database. See Chapter 9 of the Firebird Pascal API Guide for more information.

6.3 TIBTable

TIBTable provides a simple means to access and update a Firebird database table or view without
having to have knowledge of SQL. Only the table name needs to be provided and IBX does the
rest. TIBTable datasets can also be arrange in Master/Detail relationships. See also the example
in “ibx/examples/ibtable”.

6.3.1 Highlighted Properties

FieldDefs Allows editing and hence modification of the field definitions for table. May
be used to restrict the list of fields or to add calculated fields. Use with the
“StoreDefs” property.

GeneratorField Specifies the automatic setting of a field from a Firebird generator when a
new row is appended to the table. See 6.6.3.

IndexDefs Allows editing and hence modification of the index definitions for table. Use
with the “StoreDefs” property.

IndexFieldNames Used by the “Detail” table in a Master/Detail relation: identifies the fields (as
a semi-colon separated list of field names) by which the detail table is
joined to the master and also gives the sort order of the detail table.

IndexName Identifies an index used to sort the table. This property may not be used in

45

IBX for Lazarus User Guide

a “Detail” table.

MasterFields Used by the “Detail” table in a Master/Detail relation: identifies the field
names in the master table which correspond to the IndexFieldNames.

MasterSource Used by the “Detail” table in a Master/Detail relation: Identifies the data
source for the master table.

StoreDefs If true then the field and index defs are stored in the form's lfm file.

TableName The name of the database table that is the source for the dataset.

TableTypes Used to control the list of tables names returned from the server at design
time. The default list is user tables only. System tables and views can be
added to the list by selecting the appropriate options.

6.3.2 Using TIBTable

A TIBTable is arguably the simplest IBX dataset to use – although also limited in capability. To use
it simply drop the component on to a form and, in the Object Inspector, link it to a TIBDatabase and
then select the required table from the drop down list for the TableName property. When the Active
property is set, SQL is automatically generated to read the database table contents into the
dataset.

The row order can be varied by selecting an (existing) index on which to sort the data, or giving a
list of IndexFileNames in field sort order.

The table is also updateable unless its ReadOnly property is true. The SQL needed to update the
database is also automatically generated. If AllowAutoActivateTransaction and AutoCommit are
also true then transaction management is fully automated and all changes are automatically saved
to the database. You should also select the DatasetCloseAction to SaveChanges. The example
program operates in this way, with master data AllowAutoActivateTransaction set to true.

6.3.2.1 Master/Detail Tables

The main limitation of TIBTable is that it is a single table view on the database. The dataset
presented must correspond one-to-one with a table or view defined in the database. However,
even within these restrictions, it is still possible to use the component to manage tables/views in
master/detail relationships.

A Master/Detail relationship occurs when there are fields in common between two tables that allow
the tables to be joined together in such a way that one row in the Master table relates to multiple
rows in the detail table. For example, one table may be a list of departments, while the other lists
employees and the department in which they work. If the table of departments is the master and
the employees is the detail, then joining the two on the department name in a master detail
relationship means for each row selected in the department table, the employee table lists the
employees in that department – whilst excluding the rest.

To set up two tables in a master/detail relationship:

46

 The DataSet Components

1. Create the two TIBTable components and link them to the same database. In each case,
set the required table name.

2. Drop a TDataSource component on to the form and link it to the master table.

3. Link the MasterSource property of the detail table to this data source.

4. Open the Detail Table's MasterFields property editor by clicking on the button next to this
property in the Object Inspector (see Illustration 6).

5. The “Detail Index Fields” presents a list of available index field combinations in the detail
table (as defined by table indexes in the database). The appropriate index field list on which
to make the join should be selected.

6. Now select the corresponding field name(s) in the Master Fields list and click on the “Join”
button. The joined fields are now shown below.

7. Click on OK to complete the join.

At run time, you should first activate the Master table and then Detail table. Activating the detail
table in the AfterOpen event handler for the Master table is one way of ensuring this. Likewise
closing the detail table in the BeforeClose event handler for the Master table.

While the tables are open, selecting a row in the Master table will cause the detail table to be re-
opened selecting the detail rows appropriate to the selected master row.

Note, in the ibx/examples/ibtable example program, the Master table is activated in the TIBDatabase
AfterConnected event handler, and the Detail table activated in the Master table's AfterOpen event handler.

6.4 TIBStoredProc

TIBStoredProc is used to execute a stored procedure (on the Database Server), and one that
does not generate a results set. It generated the SQL needed to execute the procedure, and hence

47

Illustration 6: Master Fields Property Editor

IBX for Lazarus User Guide

avoids the programmer having to code this themselves. Advanced users may prefer to use
embedded SQL (see 5.1.7) or TIBSQL (see 5.4).

6.4.1 Highlighted Properties

PackageName Firebird 3 onwards: used to specify the package in which the stored
procedure is located. If empty then the stored procedure will be
assumed to be defined outside of any package.

StoredProcName This is the name of the stored procedure in the Firebird database.

If the database server is Firebird 3 or later then if PackageName is
not empty, the StoredProcName will be assumed to refer to a stored
procedure in the specified package.

Params The list of procedure input and output parameters, if any. Generated
from the database.

6.4.2 Using TIBStoredProc

At design time:

1. Drop a TIBStoredProc component on your form and select the database.

2. Firebird 3 or later: Set the PackageName property to the package in which the stored
procedure is located, if any, by selecting the package name from the drop down list.

3. Set the StoredProcName property in the object inspector by selecting the procedure name
from the drop down list. If PackageName is non-empty then the list is restricted to the
stored procedures located in the package. Otherwise, the list comprises all stored
procedure defined outside of any package.

At run time, and each time you execute the procedure, you may specify any required parameter
values using the Params property or ParamByName method, and then execute the procedure using
the ExecProc method.

For example:

with IBStoredProc1 do
begin
 Transaction.Active := true;
 ParamByName('EMP_NO').AsInteger := 8;
 ExecProc;
end;

In the above, it is assumed that the stored procedure has a single integer parameter with the name
EMP_NO. Once this is set the procedure may be executed. Note that the parameter names are
taken from the stored procedure definition in the database, e.g.

Create Procedure MyProc(EMP_NO Integer)
...

48

 The DataSet Components

A stored procedure can also return values as output parameters. These are accessible only by
interrogating the Params property to find the output parameter with the required name (again taken
from the stored procedure definition in the database).

Note: TIBStoredProc may not be used to execute a stored procedure that returns multiple rows using the
SUSPEND command. A TIBQuery or a TIBDataset should be used to execute this type of stored procedure
using a select query.

6.5 TIBQuery

This component is a descendent of TDataset and creates the dataset from the results of an SQL
query (Select statement or a Stored Procedure that returns a results set). The SQL query used is
given by its SQL property. It is much more powerful than TIBTable as it can generate a dataset
from any select SQL statement, joining or processing as many tables as needed. However, it does
require some knowledge of SQL to use.

The dataset provided by TIBQuery is read only unless the component is supported by an Update
Object.

6.5.1 Highlighted Properties

DataSource This is an optional link to another dataset that can be referenced for some or
all of the values required by a parameterised query. Can be viewed as a
more general version of the MasterSource property in a TIBTable.

ForcedRefresh In an updateable query, this forces each row to be refreshed automatically
from the database after it is inserted or updated. Useful for updating
computed fields (from the database) and the results that may result from
database triggers.

Note: An Update/Insert query with a RETURNING clause may be more efficient as it
avoids a full select query.

Note: The AfterRefresh event is not trigged by a ForcedRefresh. Use the AfterPost
handler instead.

GeneratorField In an updateable query specifies the automatic setting of a field from a
Firebird generator when a new row is appended to the dataset. See 6.6.3.

Params The list of parameters extracted from a parameterised query.

SQL The query SQL provided as a string list.

UpdateObject A reference to an optional TIBUpdateObject (see 6.6)

6.5.2 Using TIBQuery

At design time:

49

IBX for Lazarus User Guide

1. Drop a TIBQuery component on your form and select the database.

2. Specify the SQL Query by using the SQL property editor opened by clicking on the button
next to the TIBQuery's SQL property in the Object Inspector (see 6.5.3).

If the SQL has no parameters then all that needs to be done at run time is to set the component's
Active property to true; the query is executed and the results become available as the dataset.

• If the database is not connected when the active property is set to true then it is implicitly
opened.

• If the transaction has not been started when the active property is set to true then an
exception is raised unless the AllowAutoActivateTransaction property is also true.

The handling of parameterised queries is discussed below in 6.5.4.

Note: the dataset is often restricted to a single row in the select query. This is appropriate for a form used to
display/edit a single row of a database table and is much more efficient that reading in an entire dataset just
to edit a single row. An example of the use of multi-row datasets is when they are the source for the data
aware component TIBDynamicGrid (see 12.1).

6.5.3 The Select SQL Property Editor

The Select SQL Property editor provides a means to enter and edit an SQL Query at design time. It
also allows the query to be tested for correct syntax. Model queries can also be generated from
information sourced from the database.

For the editor to function correctly, a TIBDatabase component must referenced from the TIBQuery
and linked to a live database. A default transaction must be present and linked to the TIBDatabase
and the Database property must be set for each data access component, and pointing to the
TIBDatabase component.

50

Illustration 7: Select SQL Property Editor

 The DataSet Components

The Select SQL Editor is shown in Illustration 7. The Select SQL Editor is a specific case. IBX SQL
Editors also exist for Refresh, Update, Insert and Delete SQL.

All of IBX's SQL editors follow the same basic scheme with a combo box in the left hand frame
listing available tables and listboxes showing the columns and Primary Keys respectively for the
currently selected table. This can be used both for reference purposes and as a source for the
Generate SQL function. The Insert and Modify property editors additionally show the “Computed
By Columns” in a separate list, and the Insert Property editor has a further list for “Identity
Columns” (see 6.6.8).

• A “Generate SQL” button causes a Select, Insert, Update or Delete Statement, as
appropriate, to be generated for the currently selected table, and presented into the right
hand editor window. If one or more columns are selected then the statement is restricted to
those columns, otherwise all columns are included in the statement.

Note that in the Modify SQL Property Editor, Update statements may be restricted to avoid updating
the primary key values. If these are internal keys that are not visible to the user, then there is little
value in including them in the update statement. Computed By columns are refreshed after the
update using the UPDATE...RETURNING clause.

Note: The Insert SQL Property Editor separately lists Identity Columns. When SQL is generated,
these are not included in the list of fields to be inserted. However, a RETURNING clause is added to
return the assigned values of these columns.

• Double-clicking on a table or column name will cause that name to be inserted in the SQL
statement.

• The “Test” button can be used to validate the current SQL statement. The error generated
by the database engine, if any, will be shown to the user.

In typical use, the “Generate SQL” function provides an initial set of SQL statements that can be
edited to suit the actual purpose. The “Test” function can be used to check correct syntax and
avoids having to compile and run the program in order to test SQL syntax correctness.

The “Quote Identifiers” option places double quotes around all Field and Table Names.

The “Allow DSQL Placeholders” option allows the use of the “?” placeholder in parameterised
queries (see below).

SynEdit with SQL syntax highlighting is used to edit the statement. A toolbar and a right click popup
menu are also included for common operations including manually initiated wrap on SQL token
boundaries in order to display the entire text in the width of the current window.

Note: all SQL Property editors are sizeable using the mouse.

A Select SQL Statement is normally generated from tables and views. However, stored procedures
that return a dataset are also a potential source. Hence the tab available for a list of suitable stored
procedures (see Illustration 8).

In the Procedures tab, a drop down list of stored procedures is given. This list is restricted to stored
procedures that use the “SUSPEND” command to return multiple rows and which have output
parameters. The generated SQL is a select statement, but which may (as illustrated) have an input
parameter to the stored procedure (see also 6.5.4).

51

IBX for Lazarus User Guide

From Firebird 3 onwards, SQL Property Editors now include a "Package Name" drop down box to
allow selection of a Firebird 3 Package from which a stored procedure can be selected. With no
package name selected, non-package stored procedures are listed, otherwise, the list is restricted
to stored procedures in the selected package.

6.5.4 Parameterised Queries

In this context, a parameterised query is an SQL statement given as the value of a TIBQuery's SQL
property and which has (named) parameter placeholders included in the statement.

The SQL statement syntax supported by IBX is the same as the Dynamic SQL syntax supported by
Firebird. Both the Data Manipulation Language (DML) and the Data Definition Language (DDL) can
be used. However, there is one important difference and that is in the handling of parameterised
queries.

In normal Firebird Dynamic SQL, query parameters are represented by a '?' placeholder and are
manipulated as positional parameters. IBX does allow this approach to be used but also borrows
from the Firebird Procedure and Trigger Language and additionally allows the use of named
parameters, where a parameter name starts with a colon character and otherwise conforms with
the requirements for a database column name. For example:

Select A.EMP_NO, A.FIRST_NAME, A.LAST_NAME, From EMPLOYEE A
 Where A.EMP_NO = :EMP_NO;

52

Illustration 8: Select Query from a Stored Procedure

 The DataSet Components

is a parameterised select query where “:EMP_NO” is a parameter. This enhancement is essential
for support of update objects (see 6.6). The actual implementation of parameterised queries is
supported by the fbintf package. See section 6.1.1 of the Firebird Pascal API Guide.

For a select query, the parameter value must be specified before the query is activated. For
example:

IBQuery1.ParamByName('EMP_NO').AsInteger := 1;
IBQuery1.Active := true;

If a TIBQuery with a parameterised Select query is activated without a parameter value assigned,
and the query has a DataSource property set, the component will query the Dataset linked to
DataSource, provided that it is already active. If it has a field with the same name as the parameter
(leading ':' omitted) then the current value of the field is taken as the parameter value. This allows
master/detail relationships to be simply established by careful choice of parameter names.

In practice, the TIBQuery's BeforeOpen event handler is a good place to set any parameter values
that are not automatically set from a DataSource. Placing them here ensures the parameter values
are always set before the dataset is opened.

6.6 Update Objects

TIBQuery on its own only provides a read only dataset. If the dataset is to be updateable then a
TIBUpdateSQL or TIBUpdate must also be placed on the form and set as the value of the
TIBQuery's UpdateObject property.

6.6.1 TIBUpdateSQL

The TIBUpdateSQL provides the Modify, Insert, Delete and Refresh SQL statements needed to
make the dataset updateable.

6.6.1.1 Highlighted Properties

RefreshSQL A StringList that defines an SQL Statement used to refresh a single row
in the dataset (see 6.6.9).

ModifySQL A StringList that defines an SQL Statement used to update a single row
in the database from updated field values in the current row of the
dataset. (the UPDATE... RETURNING clause is supported see 6.6.1.4)

InsertSQL A StringList that defines an SQL Statement used to insert a single row
into the database from field values in the current row of the dataset (the
INSERT... RETURNING clause is supported see 6.6.1.4)

DeleteSQL A StringList that defines an SQL Statement used to delete a single row in
the database corresponding to the deleted (current) row of the dataset.

Property editors are available for each of the above and follow the same pattern as for the
TIBQuery SQL property editor. The TIBUpdateSQL component editor provides access to all four of
the above in one dialog.

53

IBX for Lazarus User Guide

6.6.1.2 SQL Syntax for Update Object Queries

Note: from IBX 2.2.0 onwards, Insert and Update SQL may contain a RETURNING clause (see 6.6.1.4).

Each of the SQL Statements given in an UpdateObject are parameterised queries:

• A Refresh SQL query is a select SQL Query very similar to the TIBQuery's SQL statement
except that includes a “where” clause that restricts the query result to a single row: the row
that corresponds to the current row of the dataset (typically using the Primary Key as the
select criteria). e.g.

Select A.EMP_NO, A.FIRST_NAME, A.LAST_NAME, A.PHONE_EXT, A.HIRE_DATE,
A.DEPT_NO, A.JOB_CODE, A.JOB_GRADE, A.JOB_COUNTRY, A.SALARY,
A.FULL_NAME From EMPLOYEE A
Where A.EMP_NO = :EMP_NO

• A Modify SQL query is an update SQL statement that updates a single row in the database
using the current dataset row as its data source (note the use of the :OLD_ convention for a
last parameter -see 6.6.1.3) e.g.

Update EMPLOYEE A Set
 A.EMP_NO = :EMP_NO,
 A.FIRST_NAME = :FIRST_NAME,
 A.LAST_NAME = :LAST_NAME,
 A.PHONE_EXT = :PHONE_EXT,
 A.HIRE_DATE = :HIRE_DATE,
 A.DEPT_NO = :DEPT_NO,
 A.JOB_CODE = :JOB_CODE,
 A.JOB_GRADE = :JOB_GRADE,
 A.JOB_COUNTRY = :JOB_COUNTRY,
 A.SALARY = :SALARY
Where A.EMP_NO = :OLD_EMP_NO
RETURNING FULL_NAME

• An Insert SQL query is an insert SQL statement that inserts a single row into the database
using the current dataset row as its data source. e.g.

Insert Into EMPLOYEE(EMP_NO, FIRST_NAME, LAST_NAME, PHONE_EXT,
HIRE_DATE, DEPT_NO, JOB_CODE, JOB_GRADE, JOB_COUNTRY, SALARY)

Values(:EMP_NO, :FIRST_NAME, :LAST_NAME, :PHONE_EXT, :HIRE_DATE,
:DEPT_NO, :JOB_CODE, :JOB_GRADE, :JOB_COUNTRY, :SALARY)

RETURNING FULL_NAME

• A Delete SQL query is a delete SQL statement that deletes a single row from the database
using the current dataset row as its data source. e.g.

Delete From EMPLOYEE A Where A.EMP_NO = :EMP_NO

In each of the above, named parameters are used with the convention that parameter names
correspond to field names in the dataset. This convention is then interpreted to mean that when the
query is executed, the parameter value is taken from the field in the current row with the same
(alias) name.

• In the Refresh query, the “where” clause should always use one or more fields to select the
row that have a combination of values that is unique to that row. Typically the fields that
make up the primary key for the underlying table. If the query returns multiple rows, only the
first is used to refresh the current row.

54

 The DataSet Components

• In the update query, each field in the database is updated from its corresponding field in the
current row. However, note the “OLD_” convention used in the “where” clause. This is
discussed below in 6.6.1.3. Otherwise, it should select the corresponding row in the
database similar to the refresh statement.

• In the insert query, each field in the database is also updated from its corresponding field in
the current row.

• In the delete query, the “where” clause selects the row in the database to be deleted and
should be identical to the “where” clause in the refresh statement.

In both INSERT and UPDATE queries, the “COMPUTED BY” column FULL_NAME is returned by
the query and updates the corresponding field. There is thus no need to refresh the dataset to get
the up-to-date value of this field which changes when (e.g.) LAST_NAME changes (see Firebird's
example employee database). See also 6.6.1.4.

6.6.1.3 OLD and NEW Parameters

These are typically used in Modify SQL statements. For example, when the primary key value is
changed. In this case, the row to be updated needs to be selected by the original value of the
primary key, while the field(s) that corresponds to the primary key needs to be set to the new value.
In order to support this capability, IBX allows parameter names to be prefixed by "OLD_" and
"NEW_" where the former references the fields value when it was last read from the dataset (i.e.
before a call to TDataset.Edit), while the latter is the default and refers to the modified value set
after a call to TDataset.Edit. For example, specify an Update SQL statement in the form:

UPDATE MYTABLE Set Key1 = :NEW_KEY1, COL2 = :COL2 Where Key1 = :OLD_KEY1;

to correctly handle database updates such as:

IBDataset1.Next;
IBDataset1.Edit;
IBDataset1.FieldByName('key1').AsInteger := <a new value>;
IBDataset1.Post;

Note that as NEW_ is the default, it does not need to be used unless the objective is to be explicitly clear.

The “OLD_” convention can also be used for setting field values in an update statement where
there is a need to preserve the previous value (e.g. in a different field). For example:

Update EMPLOYEE A Set
 A.EMP_NO = :EMP_NO,
 A.LAST_NAME = :LAST_NAME,
 A.PREVIOUS_NAME = :OLD_LAST_NAME,
Where A.EMP_NO = :OLD_EMP_NO

The “OLD_” convention should not be used with Refresh as refresh cannot be used unless the
dataset is in “browse” mode i.e. the current row is not being edited or inserted. Delete queries
should normally use the current value for the key rather than the old value.

6.6.1.4 Insert and Update Returning Clauses

From Firebird 2.1 onwards, Firebird supports Insert and Update Queries with “RETURNING”
clauses. After the query has been executed, this clause allows the query to return the current

55

IBX for Lazarus User Guide

values for the named columns. From IBX 2.2.0 onwards, IBX updateable datasets support Insert
and Update Queries with “RETURNING” clauses by:

• Once the query is executed a check is made for any returned values.

• For each returned value, the name of the returned value (its alias name) is matched against
the list of alias names for the dataset columns.

• If a match is found then the returned value replaces the current value for that column in the
current row.

Note: if, for some reason, the data type of the returned data is incompatible with the data type of the column,
then an exception is raised.

6.6.1.5 Delete Returning Clauses

DELETE...RETURNING queries are also recognised. However, as they are called when the
dataset row is being deleted, there is no value in updating the current record from the query result.
Instead, an event handler OnDeleteReturning is provided. If a DELETE...RETURNING query is
execute and an OnDeleteReturning event handler is provided then it is called with the IResults
returned by the query. The event handler can then interrogate the query results and perform
whatever action is necessary. For example to confirm, to the user, the deletion of a row with the
returned values.

6.6.1.6 Using Stored Procedures for Insert, Update or Delete

It is possible to specify a Stored Procedure for an Insert, Update or Delete SQL if this results in the
correct semantic i.e. row insertion, update or delete. In this case, the “Execute Procedure” syntax
is used with the procedure input parameters expressed in the same (leading ':') syntax as used for
parameterised queries. E.g.

Execute Procedure MyProc :Arg1, :Arg2

Stored procedures executed in this way can return a singleton row of output parameters (if the
procedure definition includes output parameters). If available, these are always returned. The
output parameters, if any, are treated in the same way as INSERT...RETURNING or
UPDATE...RETURNING outputs. They are scanned after the stored procedure is executed and for
each output parameter name that matches the aliasname of dataset field, the value of the output
parameter is used to update the corresponding field in the current row.

6.6.2 TIBUpdate

This component can also be linked from a TIBQuery component and is a more general way to
support updateable queries than that provided by TIBUpdateSQL. While TIBUpdateSQL supports
single SQL statement for Delete, Update or Insert, TIBUpdate provides an event handler for
Update, Insert or Delete together with an ISQLParams interface providing access to all current and
“old” field values. This gives the programmer complete freedom as to how the Update, Insert or
Delete is performed.

Examples of use include:

• Updating a dataset listing user privileges and roles, with Update, Insert and Delete
translated into one or more Grant and Revoke statements.

56

 The DataSet Components

• Implementing a writeable view programmatically rather than through triggers. This may be
necessary when a schema update to add triggers to (e.g.) an existing view is not permitted,
or when access to information not readily available at the trigger level is required.

• Filtering of dataset updates including silent discard of updates.

6.6.2.1 Highlighted Properties

RefreshSQL A StringList that defines an SQL Statement used to refresh a single row
in the dataset.

DataSet A read only property referencing the dataset being updated.

OnApplyUpdates This event is called in response to the dataset posting an Update, Insert
or Delete action. The event handler is provided with the:

• Update action requested (Update, Insert or Delete), and

• An ISQLParams interface giving access by name to all field
values: both current and “old” values. The “old” values (i.e. prior
to the update) are accessed by prefixing the field name with
“OLD_”. All accesses by name are case insensitive.

6.6.3 Generators

A Firebird Generator (known also as a Sequence) is used to generate a unique sequence number
independent of transactions. A typical use is to generate a new primary key for a table which is
guaranteed to not clash when another user also adding a record to the same table.

A new generated sequence number is often required when a new row is added to a dataset and
the field used for the record key should be set to this sequence number. IBX supports this for
updateable datasets when appending or inserting new rows, and through the dataset's
GeneratorField property.

To specify a generator and the linked field, at design time, open the GeneratorField property
editor by clicking on the button next to the property in the Object Inspector. The property editor
should then appear.

Note: this property is part of the dataset (e.g. TIBQuery) and not the update object.

57

IBX for Lazarus User Guide

You may then select the generator from those available in the database and the dataset's field that
is to be set from the generator. The field can be set either when the record is inserted or when it is
posted. In most cases “On New Record” is appropriate. “On Post” is only really useful when the
field is set in a “just in time” manner i.e. to avoid unused sequence numbers.

6.6.4 Updating Datasets

The following rules apply:

1. Only the current row can be modified at any one time.

2. Before a row can be modified, the dataset must be placed into the edit state by calling the
Edit method.

Note that data aware controls usually call the “Edit” method automatically whenever the data they
present is modified.

3. A new row can be added by calling the Append, AppendRecord, Insert or InsertRecord
method. The dataset then enters the “insert” state.

4. Changes are written to the database by the Post method. This can be used whenever the
dataset is in the “edit” or “insert” state. On completion, the dataset returns to the “browse”
state.

5. Changes can be abandoned (before a post) using the Cancel method.

Note that enabling ForceRefresh is useful whenever the dataset includes dependent fields in the query (e.g.
from a “JOINed” table) and ensures that the dataset presented is always consistent with the data in the
database.

58

Illustration 9: Define Generator Editor

 The DataSet Components

6.6.5 Automatic Posting

An updateable IBX dataset will automatically post a modified record when scrolling between rows.
When the dataset is closed, the behaviour depends on the setting of the DataSetCloseAction
property:

• If set to discard changes (the default) a modified record is “cancelled” and the changes lost.

• If set to save changes, the modified record is “posted” before the dataset is closed. The
exception is when the dataset is closed due to transaction rollback when the changes are
discarded.

6.6.6 The OnValidatePost Event

TOnValidatePost = procedure (Sender: TObject; var CancelPost: boolean) of object;

This event is available for all updateable datasets and is called as the first action in the Post
method. If it returns with “CancelPost” set to true, then the “Cancel” method is called and the “Post”
terminated. The event handler can thus decide if the Post should be cancelled by checking the
actual field values, even prompting the user to decide.

In terms of event sequencing, the event occurs before an OnBeforePost Event. Thus when the
dataset is scrolled and the current record is in the “modified” state, then the following events will
occur:

• OnValidatePost (returns CancelPost = false)
• OnBeforePost
• OnAfterPost
• OnBeforeScroll
• OnAfterScroll

or

• OnValidatePost (returns CancelPost = true)
• OnBeforeCancel
• OnAfterCancel
• OnBeforeScroll
• OnAfterScroll

Note that trying to call “Cancel” in an OnBeforePost handler does not work as the Post still proceeds and, in
IBX, an error will be reported.

An exception could be raised in either the OnValidatePost handler or in the OnBeforePost handler
to report an actual error in the data.

6.6.7 Cached Updates

If an updatable dataset's CachedUpdates property is set to true then updates are cached rather
than written through to the database when Post is called. Instead, they are only written to the
database when the ApplyUpdates method is called. This method flushes the cache and writes the
changes to the database. Alternatively, the CancelUpdates method also flushes the cache but
discards the changes instead of writing them to the database; the original row values are restored.

59

IBX for Lazarus User Guide

Note that if DatasetCloseAction is set to Save Changes then ApplyUpdates is automatically called after
any pending change has been posted.

Cached updates are often very useful when a form is used to edit a multi-row dataset. In this case,
the updates need only be written to the database when the form is closed with a ModalResult of
mrOK. If it is closed with mrCancel, then CancelUpdates may be called and the changes are not
written through to the database.

The same effect could be achieved with transactions, but this may not be always as useful or
efficient.

6.6.7.1 Cached Updates using OnUpdateRecord

Cached updates can be filtered or performed by an external function (to IBX) by assigning an
OnUpdateRecord event handler. This has the signature:

TIBUpdateRecordEvent = procedure(DataSet: TDataSet; UpdateKind: TUpdateKind;
 var UpdateAction: TIBUpdateAction) of object;

The ApplyUpdates method will cycle through all modified, inserted or deleted records in the record
cache in turn. For each one, it will call the OnUpdateRecord event handler specifying the
UpdateKind as ukModify, ukInsert or ukDelete respectively and expecting the event handler to
return with an appropriate UpdateAction specified.

When OnUpdateRecord is called, the current dataset record is set to the row for which an
UpdateAction is requested and hence the OnUpdateRecord event handler can determine the field
values for this row by using TDataset.Fields or TDataset.FieldByName as normal.

On return, the UpdateAction must be set to one of the following:

uaFail ApplyUpdates terminates with a user abort error.

uaAbort Sysutils.Abort is called

uaSkip The current record is skipped by ApplyUpdates and remains in the cache with
its cache status unchanged i.e. as a modified, inserted or deleted record.

uaRetry The OnUpdateRecord event handler will be recalled.

uaApply The updated should be applied by IBX.

uaApplied The OnUpdateRecord handler has performed the database update itself.

Note: returning uaApplied without actually performing the update will leave the dataset
out of sync with the database.

6.6.7.2 The OnUpdateError Event

The OnUpdateError event is called when an exception is raised within IBX when a cached update
is applied. Its signature is:

TIBUpdateErrorEvent = procedure(DataSet: TDataSet; E: EDatabaseError;

60

 The DataSet Components

 UpdateKind: TUpdateKind; var TheUpdateAction: TIBUpdateAction)
 of object;

The event handler should return uaFail, uaAbort or uaSkip. uaFail causes the exception to be re-
raised while the other two have the same semantics as above. Any other response causes the
exception to be ignored and may leave the dataset out of sync with the database.

6.6.8 Identity Columns

Firebird 3 has introduced the Identity column, where an identity column is a column associated with
an internal sequence generator. Its value is set automatically when the column is omitted in an
INSERT statement.

IBX supports Identity columns by support of the INSERT … RETURNING clause (see 6.6.1.4).
When an Identity column is used (e.g. to generate a unique integer for a primary key), the Insert
statement in a TIBUpdateSQL should not include the column in its list of inserted values. Instead,
the Identity column should be named in the RETURNING clause.

For example, if a simple example table is defined as:

CREATE TABLE ITEST
(
 MYKEY integer GENERATED BY DEFAULT AS IDENTITY,
 SOMETEXT varchar(64),
 PRIMARY KEY (MYKEY)
);

then an appropriate Insert SQL would be:

Insert Into ITEST(SOMETEXT)
Values(:SOMETEXT) RETURNING MYKEY;

When IBX executes the above Insert statement, the current value of the “SOMETEXT” column is
inserted into a new dataset row and the value of the KEY column is set (by Firebird) to the next
value returned from the corresponding generator. Once the statement has been executed, IBX
reads the returned value of the MYKEY column and replaces the current value of the MYKEY field
(NULL) with the returned value i.e. the value inserted into the new row.

When using IBX with an Identity column, you should note the following:

• The Identity column should not be included in the Insert SQL list of inserted values.

• The Identity column should be included in the values returned by the Insert statement's
RETURNING clause.

• Until a new dataset row has been posted, the value of the Identity column in the current row
is null. This is true between executing TDataset.Append and TDataset.Post.

• The generated value of the Identity column is available from the TDataset.AfterPost event
handler onwards.

• Cached Updates: the value of an Identity column is only known once the row has been
inserted into the database table, hence when cached updates are used, any Identity
columns in newly inserted rows remain null until “ApplyUpdates” is called and the cached

61

IBX for Lazarus User Guide

updates are applied to the database. After a call to “ApplyUpdates” the Identity Column
values are set to the value assigned by Firebird.

The IBX InsertSQL property editor generates an Insert SQL statement compatible with the above.

An example of the use of Identity columns is provided in examples/IdentityColumn.

6.6.9 Row Refresh

The Refresh Query is used to refresh the current row by executing (typically) a select query that
returns the current value of all fields in the row from the database. A refresh is used to ensure that
the row is up-to-date and in sync with the database. It is often used to return the values of
computed by fields after a row is posted.

A row Refresh is performed when a Refresh Query is present and:

1. The TDataset.Refresh method is called, or

2. Immediately after an inserted or updated row is posted and either:

a) The ForcedRefresh property is true, or

b) The dataset's select query contains read only (computed by) fields and the Insert, or
Update, query used to update the database did not return any values.

In general, using INSERT...RETURNING or UPDATE...RETURNING is a more efficient way of
returning the updated value of computed by fields than is a row refresh (which involves executing a
select query) and is hence preferred.

Prior to IBX 2.2.0, INSERT...RETURNING and UPDATE...RETURNING was not supported and
hence a row refresh was always performed after an inserted or updated row was posted to the
database when the dataset fields contained read only (computed by) fields. When
INSERT...RETURNING or UPDATE...RETURNING is used, it is assumed by IBX that this more
efficient mechanism is used for returning the values of computed by columns and hence the
automatic row refresh is not used.

The ForcedRefresh property can always be used to ensure a row refresh after an inserted or
updated row has been posted regardless of whether INSERT...RETURNING or
UPDATE...RETURNING is or is not used.

Note: the AfterRefresh event is only called when a row refresh is performed by a call to TDataset.Refresh.

When cached updates are used, the database is only updated when the TDataset.ApplyUpdates
method is called. Hence, with cached updates, the insert or update query is only called from
TDataset.ApplyUpdates and not from TDataset.Post and, consequentially, row refresh is only
performed, as above, during the processing of TDataset.ApplyUpdates.

Note: cached updates may not be appropriate when the application demands that a dataset row is up-to-date
immediately after a TDataset.Post.

6.7 TIBDataSet

The TIBDataset is TIBQuery and TIBUpdateSQL rolled into one. It defines an updateable dataset
and in a single object. All of the above applies.

62

 The DataSet Components

6.7.1 Highlighted Properties

SelectSQL A StringList that defines a select SQL Statement used to define the
dataset.

RefreshSQL A StringList that defines an SQL Statement used to refresh a single row
in the dataset.

ModifySQL A StringList that defines an SQL Statement used to update a single row
in the database from updated field values in the current row of the
dataset.

InsertSQL A StringList that defines an SQL Statement used to insert a single row
into the database from field values in the current row of the dataset

DeleteSQL A StringList that defines an SQL Statement used to delete a single row in
the database corresponding to the deleted (current) row of the dataset.

A component editor is also available for TIBDataset. This is accessed by right clicking on the
component once it has been placed on the form. The component editor allows all five SQL
statements to be generated with a single click.

6.8 Dataset Fields

The TDataset model introduces both FieldDefs and Fields where:

• a FieldDef (base class TFieldDef) is created for each column in a dataset and defines
various properties including the data type and size. Under IBX, the Fielddef is created from
the underlying select query metadata.

• A Field (base class TField) is either dynamically created for each column when the dataset
is opened or is created at design time as a published property of the Form on which the
dataset is placed, and bound to the dataset column when the dataset is opened. The Field
provides the interface between the dataset column and the dataset user and all data
access and modification is performed through a Field. Fields are created from the
FieldDefs.

6.8.1 FieldDefs

IBX subclasses TIBFieldDef from TFieldDef in order to hold extended Firebird specific information
about each database column. This information is available as the following properties:

CharacterSetName Applies to string and Blob string fields and gives the Firebird character
set name of the string's character set.

CharacterSetSize Applies to string and Blob string fields and gives the maximum number
of bytes in each character.

63

IBX for Lazarus User Guide

CodePage Applies to string and Blob string fields and gives the AnsiString code
page associated with the column's Firebird Character Set.

DataSize The maximum number of bytes required to hold data in this column.

RelationName The Firebird Table Name in which the column is located, if any.

ArrayDimensions Applies to array columns only and gives the number of dimensions in the
array.

ArrayBounds Applies to array columns only and gives the bounds for each dimension.

IdentityColumn Applies to integer and numeric columns only and is set to true if the
underlying column is an “Identity Column”.

The FieldDefs can be accessed using the TDataset.FieldsDefs property. This returns a list of
FieldDefs of type TFieldDef. For IBX Datasets these may be cast to TIBFieldDef in order to access
the extended properties.

6.8.2 IBX Fields

The FCL defines several TField subclasses (e.g. TStringField). Each is specialised to a specific
column data type. When the fields are created from a FieldDef, the data type of the column is used
to determine the actual TField subclass that is created for the field.

IBX defines several extended TField subclasses (e.g. TIBStringField is subclassed from
TStringField) in order to provide extended functionality and to make available Firebird specific
column properties.

A field is typically accessed using the TDataset.FieldByName method or, for fields created at
design time as Form properties, by the corresponding identifier name given to the Form property.

6.8.2.1 TIBBCDField, TIBSmallintField, TIBIntegerField and TIBLargeIntField

These are subclasses of the corresponding FCL classes and provide the additional property:

IdentityColumn Set to true if the underlying column is an “Identity Column” (see 6.6.8).

6.8.2.2 TIBStringField

This is a subclass of TStringField. It's primary responsibility is to ensure that the ANSI code page
assigned to strings read from the database matches the Firebird character set of the text string
returned by the database. For strings written to the database, it compares the ANSI code page of
the string with the Firebird Character set specified for the column and transliterates the string if
necessary to that expected by Firebird.

It also provided the following properties:

64

 The DataSet Components

CharacterSetName The Firebird character set name of the string's character set.

CharacterSetSize The maximum number of bytes in each character.

CodePage The AnsiString code page associated with the Firebird Character Set.

AutoFieldSize By default true. It is applicable for Fields created at design time as Form
properties. When, at run time, the dataset is opened and the field is
bound to the dataset column, if true then the column data size provided
by the database over-writes that specified at design time. If false then
the design time value is used.

It is very rare that AutoFieldSize is not set to true. If the value set at
design time is too small then this could lead to memory corruption.

6.8.2.3 TIBMemoField

This is subclass of TMemoField and is used for text blobs (see also 8.1.1). It is similar to
TIBStringField in that it also manages string code pages and provides for automatic transliteration
of strings written to the database.

Additionally, it also allows for automatic string truncation when the contents is retrieved as
“DisplayText”. This is the case when, for example, a blob string is the source for a column of a
TDBGrid. When a TIBMemoField's contents is retrieved as DisplayText then, depending on its
DisplayTextAsClassName property:

• The text returned is the field's classname enclosed in brackets (FCL default).

• The text returned is the contents of the field truncated, if necessary, to the number of
characters (including trailing ellipses) given by the inherited DisplayWidth property.

The field provides the following additional properties:

CharacterSetName The Firebird character set name of the string's character set.

CharacterSetSize The maximum number of bytes in each character.

CodePage The AnsiString code page associated with the Firebird Character
Set.

DisplayTextAsClassName If true then the inherited default behaviour is used for display text
and the display text is no more than the classname. If false, then the
display text is the contents of the field truncated, if necessary, as
described above.

65

IBX for Lazarus User Guide

6.8.2.4 TIBArrayField

This is a specialised TField subclass used for Firebird array columns. It is described in section 9.2.

66

 IBX Support Components

7
IBX Support Components

7.1 The IBX Script Engine

TIBXScript script engine runs an SQL script from a file or stream. The text is parsed into SQL
statements which are executed in turn. The intention is to be compatible with Firebird's ISQL
command line utility, but with extensions:

• All DML and DDL Statements are supported.

• CREATE DATABASE, DROP DATABASE, CONNECT and COMMIT are supported.

• The following SET statements are supported:

◦ SET SQL DIALECT
◦ SET TERM
◦ SET AUTODDL
◦ SET BAIL
◦ SET ECHO
◦ SET COUNT
◦ SET STATS
◦ SET NAMES <character set>

• New Command: RECONNECT. Performs a commit followed by disconnecting and
reconnecting to the database.

• Procedure Bodies (BEGIN .. END blocks) are self-delimiting and do not need an extra
terminator. If a terminator is present, this is treated as an empty statement. The result is
ISQL compatible, but does not require the use of SET TERM.

• DML statements may have arguments in IBX format (e.g UPDATE MYTABLE Set data =
:mydata). Arguments are valid only for BLOB columns and are resolved using the

67

IBX for Lazarus User Guide

GetParamValue event. This returns the blobid to be used. A typical use of the event is to
read binary data from a file, save it in a blob stream and return the blob id.

• The simple XML formats for binary blob data (see 7.6.1) and array data (see 7.6.2) as
exported by TIBExtract (see 7.6) are supported.

• C++ style comment lines.

Select SQL statements are not directly supported but can be handled by:

1. An external handler (OnSelectSQL event).

2. A DataOutputFormatter. This formats the dataset returned by the select statement and
writes the result to the Output Log.

If an SQL handler or a DataOutputFormatter is not present then an exception is raised if a Select
SQL statement is found.

7.1.1 Properties:

Database Link to a TIBDatabase component

Transaction Link to a TIBTransaction. Defaults to internal transaction
(concurrency, wait)

AutoDDL When true, DDL statements are always committed after execution

Echo When true, all SQL statements are echoed to log

StopOnFirstError When true the script engine terminates on the first SQL Error.

IgnoreGrants When true, grant statements are silently discarded. This can be useful
when applying a script using the Embedded Server.

ShowAffectedRows When true, the number of affected rows is written to the log after a
DML statement is executed.

ShowPerformanceStats When true, performance statistics (in ISQL format) are written to the
log after a DML statement is executed.

DataOutputFormatter Identifies a Data Output Formatter component used to format the
results of executing a Select Statement.

7.1.2 Events:

GetParamValue called when an SQL parameter is found (in PSQL :name format). This is
only called for blob fields. Handler should return the BlobID to be used
as the parameter value. If not present an exception is raised when a

68

 IBX Support Components

parameter is found.

Hint: use TIBBlobStream to create and read the blob from a file.

OnOutputLog Called to write SQL Statements to the log (stdout)

OnErrorLog Called to write all other messages to the log (stderr)

OnProgressEvent Progress bar support. If Reset is true the value is maximum value of
progress bar. Otherwise called to step progress bar.

OnSelectSQL handler for select SQL statements. If not present, then the
DataOutputFormatter is used to process select SQL statements. If
neither an OnSelect Handler or a DataOutputFormatter is defined then
select statements. result in an exception.

An OnSelectSQL handler may either process the select statement itself
or call TIBXScript.DefaultSelectSQLHandler to invoke default processing
as described above.

OnSetStatement Handler for unrecognised SET Statements.

OnCreateDatabase This event is called immediately prior to executing a Create Database
SQL statement. For example, it gives an opportunity to review the
filename given for the database and to replace it with an alternative.

7.1.3 Usage

The following TIBXScript functions may be used to execute an SQL statement or script:

 function RunScript(SQLFile: string): boolean; overload;
 function RunScript(SQLStream: TStream): boolean; overload;
 function RunScript(SQLLines: TStrings): boolean; overload;
 function ExecSQLScript(sql: string): boolean;

An SQL script may be passed as a File, a stream, a TStrings or as a single string. The above
functions differ only in the way the script is provided. Otherwise, they are identical. The script is
parsed into statements and executed one statement at a time in the order given in the script. The
function returns true if all statements have been successfully executed and false otherwise.

7.1.4 Examples

Two example programs are provided in the “ibx/examples” directory that illustrate the use of
TIBXScript in both GUI and console mode. These are:

1. ibx/examples/scriptengine

2. ibx/examples/fbsql

69

IBX for Lazarus User Guide

7.1.4.1 The Script Engine Example

This example application illustrates use of the TIBXScript SQL script engine. It works with the
example employee database and comes with various test scripts to illustrate how it works. These
are all located in the "tests" directory.

Compile and run the application after first ensuring that the example employee database is
available on the local server. If it is on a remote server, then you will have to adjust the
IBDatabase1.DatabaseName property accordingly.

You can just type SQL queries into the left hand text box and click on "Execute" to run them. The
results appear in the right hand text box. Select queries are supported by opening a new
dynamically created window with a grid containing the query results. This window is non-modal and
multiple query results can be shown simultaneously. The grid is a TIBDynamicGrid and clicking on
the column header will resort the grid using the selected column.

The test scripts are loaded in the left hand text box by clicking on the "Load Script" button. The
provided scripts are:

1. CreateCountriesTable.sql

This adds a new table "COUNTRIES" to the employee database and then populates it with country
data including the country name and ISO2 and 3 character short names. At the end of the script,
the contents of the new table are displayed.

2. CreateCountriesTablewithError.sql

This does the same as the above, except that the first insert statement contains a syntax error. It
may be used to experiment with the "Stop on First Error" checkbox, and shows how the script
engine can recover and continue from (some) syntax errors.

3. DeptListView.sql

This script adds a complex View to the database and tests the script engine in complex scenarios,
such as recursive queries.

4. createproc.sql

This script adds three simple stored procedures. It demonstrates the different ways that procedure
bodies can be declared (ISQL compatible, standard terminator and no terminator). Use of
comments is also demonstrated.

5. ParameterisedQueries.sql

This script demonstrates the use of PSQL style query parameters for BLOB columns. In this case a
new column "Image" is added to the COUNTRY Table and an image in png format (the flag of St
George) is added to the entry for England. The value of the Image column is given by a parameter
":MyImage". This is resolved by the application which asks for the file containing the image to be
placed in the field.

You should locate and return the "flag_en.png" file.

Note that the interactive resolution of the parameter is an example. The parameter resolution is
carried out by an event handler that could, for example, have looked for a file which might
conventionally have been called "MyImage.bin" to correspond to the query parameter.

70

 IBX Support Components

6. Reverseall.sql

Reverses out the above.

7. SelectQuery.sql

Illustrates handling of select queries.

7.1.5 The fbsql Console Mode Application

fbsql is more than just a simple example and is an ISQL replacement console mode program for
both interactive and non-interactive use. fbsql uses TIBXScript as its SQL Script Engine and
TIBExtract (See 7.6) to extract metadata from the database. Select queries are handled by by
outputing the query results to stdout in CSV format suitable for loading into a spreadsheet, as
insert statements, or in a block format. It also includes an interactive version of TIBXScript.

Usage: fbsql <options> <database name>

Options:
-a write database metadata to stdout
-A write database metadata and table data to stdout
-b stop on first error
-e echo sql statements to stdout
-i <filename> execute SQL script from file
-h show this information
-o <filename> output to this file instead of stdout
-p <password> provide password on command line (insecure)
-r <rolename> open database with this rolename
-s <sql> Execute SQL text
-t specify output format for SQL Statements
 BLK (default) for block format
 CSV (default) for CSV format
 INS (default) for Insert Statement format
-u <username> open database with this username (defaults to SYSDBA)

Environment Variables:
ISC_USER Login user Name
ISC_PASSWORD Login password

Saving the username and/or password as environment variables avoids having to enter them on
the command line and is a more secure means of provding the password.

If no password is provided on the command line or through the environment, then the user is
prompted for a password to be entered securely.

If neither an "-s" or a "-i" option is provided on the command line, then fbsql runs interactively.

fbsql uses IBX in console mode. Before opening this project you should tell the Lazarus IDE about
the ibexpressconsolemode package. All you need to do in the IDE is to select "Packages->Open
Package File" and open ibexpressconsolemode.lpk which you can find in the ibx root directory. You
should then close it again immediately afterwards. There is no need to install or compile it.
Opening the package is sufficient for Lazarus to remember it.

71

IBX for Lazarus User Guide

SQL Statements Supported

• All DML and DDL Statements are supported.
• CREATE DATABASE, DROP DATABASE, CONNECT and COMMIT are supported.
• Additionally, RECONNECT is interpreted as dropping the connection and reconnecting.

ISQL Command Support

• SET SQL DIALECT
• SET TERM
• SET AUTODDL
• SET BAIL
• SET ECHO
• SET COUNT
• SET STATS
• SET NAMES <character set>
• SET HEADING
• SET ROWCOUNT
• SET PLAN
• SET PLAN ONLY
• QUIT
• EXIT

To use, compile the program in the Lazarus IDE and run it from the command line. See above for
the command line parameters. For example:

fbsql -a -u SYSDBA -p masterkey employee

will write out the metadata for the local employee database to stdout (assuming default password).

fbsql -A -u SYSDBA -p masterkey -o employeedump.sql employee

will dump the employee database, include data, to a text file (employeedump.sql).

fbsql -u SYSDBA -p masterkey -i employeedump.sql

will recreate the database dumped in the file "employeedump.sql". Note that the "CREATE
DATABASE" statement is at the start of this file and should be edited to identify the database file
that is to be created. Alternatively,

fbsql -u SYSDBA -p masterkey -i employeedump.sql new-employee.fdb

will restore the database to the database file 'new-employee.fdb' provided that it has already been
created as an empty database. Note that in this case, the "CREATE DATABASE" statement should
remain commented out.

fbsql -s "Select * From EMPLOYEE" -u SYSDBA -p masterkey employee

will write out the contents of the EMPLOYEE table in the local employee database to stdout
(assuming default password).

fbsql -b -e ../scriptengine/tests/CreateCountriesTable.sql -u SYSDBA -p
masterkey employee

72

 IBX Support Components

will run the script CreateCountriesTable.sql from the script engine test suite and apply it to the local
employee database. Each statement will be echoed to stdout and processing will stop on the first
error.

Note that on Linux, to run a program from the command line that is not on the PATH, you need to:

cd to the example directory "ibx/examples/fbsql"

run the program as "./fbsql" e.g.

./fbsql -a -u SYSDBA -p masterkey employee

7.2 The Data Output Formatters

These are helper components, primarily for use with TIBXScript, but which are also used by
TIBExtract (for formatting data as SQL Insert statements). Their purpose is to execute SQL
SELECT statements and to format the results of the query. Data Output Formatters are currently
available for:

• Block Format Output (TIBBlockFormatOut)
• CSV Format (TIBCSVDataOut)
• SQL Insert Statements (TIBInsertStmtsOut).

7.2.1 Usage

For use with IBXScript: simply drop the appropriate component on to your form and link the
TIBXScript DataOutputFormatter property to the required Data Output Formatter.

The Data Output Formatters may also be used directly. The properties listed below apply. All
components support the following methods:

 procedure Assign(Source: TPersistent); override;
 procedure DataOut(SelectQuery: string; Add2Log: TAdd2Log);
 procedure SetCommand(command, aValue, stmt: string; var Done: boolean); virtual;
 class procedure ShowPerfStats(Statement: IStatement; Add2Log: TAdd2Log);

Assign: is used to copy the properties from one component to another.

DataOut: executes the supplied query. It formats the results as one or more lines and returns each
line by calling the supplied “Add2Log” event handler.

SetCommand: is used by TIBXScript to extend the processing of SET commands to the Data Output
Formatter. SET (HEADING | ROWCOUNT | PLAN | PLANONLY) commands are handled this way.

ShowPerfStats: is a common utility function used to format IStatement performance statistics in an
ISQL compatiable fashion.

7.2.2 Properties

Database Link to a TIBDatabase component

Transaction Link to a TIBTransaction. Defaults to internal transaction

73

IBX for Lazarus User Guide

(concurrency, wait)

PlanOptions Determines whether the execution plan is returned instead of, with, or
not at all, when the query results are formatted.

RowCount When non-zero, limits the number of output rows.

ShowPerformanceStats When true, ISQL compatible Performance Statistics are included after
the query results.

IncludeHeader When true, a header row is included in the results (CSV and Block
Formats only).

QuoteChar Character used to delimit text in CSV format output (defaults to single
quotes).

IncludeBlobsAndArrays When true, insert statements include blob and array data formatted as
XML (see 7.6.1 and 7.6.2)

7.3 The SQL Parser

IBX 1.2 introduced the TSelectSQLParser class (located in the IBSQLParser unit). This class
supports the parsing and modification of Firebird Select SQL statements. It is intended to parse all
such statements including UNIONs and Common Table Expressions.

Note: its purpose is to permit reliable modification of “Where”, “Having” and “Order by” clauses in particular,
and is not an SQL validator. While invalid SQL will often generate an exception, this is not guaranteed.

7.3.1 The Parser

The parser can be used as a standalone class, but is typically accessed using the “Parser”
property of a TIBDataSet or a TIBQuery, and in a “BeforeOpen” event handler. Accessing the
Parser property causes a TSelectSQLParser object to be created and its result is used when the
dataset is opened.

An example of use may be found in ibx/examples/employee where it is used to filter the
EMPLOYEE table query according to user selectable criteria. In this example, the BeforeOpen
handler is

procedure TForm1.EmployeesBeforeOpen(DataSet: TDataSet);
begin
 if BeforeDate.Date > 0 then
 (DataSet as TIBParserDataSet).Parser.Add2WhereClause('HIRE_DATE < :BeforeDate');
 if AfterDate.Date > 0 then
 (DataSet as TIBParserDataSet).Parser.Add2WhereClause('HIRE_DATE > :AfterDate');

 case SalaryRange.ItemIndex of
 1:
 (DataSet as TIBParserDataSet).Parser.Add2WhereClause('Salary < 40000');
 2:
 (DataSet as TIBParserDataSet).Parser.Add2WhereClause('Salary >= 40000
 and Salary < 100000');

74

 IBX Support Components

 3:
 (DataSet as TIBParserDataSet).Parser.Add2WhereClause('Salary >= 100000');
 end;

 {Parameter value must be set after all SQL changes have been made}
 if BeforeDate.Date > 0 then
 (DataSet as TIBParserDataSet).ParamByName('BeforeDate').AsDateTime
 := BeforeDate.Date;
 if AfterDate.Date > 0 then
 (DataSet as TIBParserDataSet).ParamByName('AfterDate').AsDateTime := AfterDate.Date;
end;

In the example, two filters are available for user use:

• Restriction of “Hire Date” to a selected date range

• Restriction of salary to a drop down list of salary bands.

In each case, the filters need to be added to the SQL“Where” clause.

When the Parser object is first invoked, it is created using the original SQL text as set at design
time. Calls to the method “Add2WhereClause” then do as expected – the supplied condition is
ANDed with the existing “Where” Clause. An optional second parameter to Add2WhereClause is
also available to OR the condition with the current “Where” clause (not shown).

In the above example, if the user has selected a given filter, then the SQL is updated as
appropriate. Add2WhereClause can be called multiple times and each time it adds to the current text
of the “Where” clause. Parentheses are automatically added in order to ensure that the semantics
of the original condition are maintained.

In this example, the requested Hire Date could have been formatted as text e.g.

HIRE_DATE < '2015-01-01'

However, it is generally more reliable to let IBX handle date time conversions and so a
parametrised query is used instead, with the parameter value being applied later on in the event
handler.

Note that the example also illustrates an important rule: in a BeforeOpen event handler, parameter values
must be set only after all SQL manipulation is complete. This is because the query must be “prepared” before
parameter values are set and modifying the SQL always causes the query to be “unprepared” with the
consequence that any parameter values are discarded.

In use, when a user changes a filter selection, the dataset is closed and re-opened causing the
SQL to be re-generated and the result set appears with the filter applied.

A TIBDataSet SelectSQL or a TIBQuery SQL statement can still be updated at runtime. As before,
this will close the dataset and unprepare the query. In addition, the initial SQL used for the Parser
is also changed to the new value set at runtime.

7.3.2 Use with IBControls

The TSelectSQLParser is used by the IBControls (see chapter 12). These controls also use the
Parser property and access it before the BeforeOpen event handler is called.

75

IBX for Lazarus User Guide

7.3.3 Example

An example of direct use of the TSelectSQLParser can be found in ibx/examples/sqlparser. This is
a simple form that can be used to experiment with the parser and see how the SQL statement is
affected by calling methods such as Add2WhereClause.

As shown in Illustration 10, you can use the example program to test out the parser by:

• pasting an SQL Query into the “Original SQL” text box

• entering an SQL Condition into one or more of the text boxes below

• selecting the required options,

• and clicking on the “Generate Updated SQL” button.

The updated SQL Statement should now appear in the right hand text box.

The example chosen here is a fairly trivial one taken from the ibx/examples/employee program and
shows a single filter clause being added to the SQL used to generate the employees list.

76

Illustration 10: SQL Parser Example

 IBX Support Components

7.3.4 TSelectSQLParser Reference

For all properties and methods consult the source code. The following are those intended to be
used in a BeforeOpen event handler:

• procedure Add2WhereClause(const Condition: string; OrClause: boolean=false;
IncludeUnions: boolean = false);

This method is used to add an SQL condition to an SQL “Where” clause. If one does not
exist in the original query, then the clause is added. By default, the condition is ANDed with
the current “Where” condition. If the “OrClause” argument is true, then it is ORed.

By default, the condition is only added to the first select statement in a UNION. If the
“IncludeUnions” argument is true, then it is added to every select statement in the UNION.

• procedure Add2HavingClause(const Condition: string; OrClause: boolean=false;
IncludeUnions: boolean = false);

The behaviour of this method is identical to Add2WhereClause, except that it applies to
the “Having” clause of the select statement.

• property Union: TselectSQLParser;

When the select statement is a union, the second select statement is accessible through
the “Union” property. Each select statement in the union is recursively added to the
preceding statement via this property.

• property OrderByClause: string;

The current “Order By” is accessed and replaced via this property. The text is the clause
less the “Order by” keyword.

• property SQLText: string

This property returns the current SQL statement complete with any modifications. This
property may be useful when debugging.

7.4 ISQL Monitor

The TIBISQLMonitor component is a debugging aid that lets you see all SQL operations performed
by IBX. It can be used to identify bottlenecks and performance problems amongst other problems.
An IBX application can monitor itself or, if permitted, it can also monitor another IBX application,

7.4.1 TIBISQLMonitor

This component needs only to dropped on to a form and its Enabled property set tp true in order to
start monitoring. It does not have to be connected to any other IBX component. A TIBISQLMonitor
component can act as a source or a sink, or both for SQL trace information.

7.4.1.1 Selecting what to monitor

The TIBDatabase TraceFlags property determines the SQL actions to be reported to a
TIBSQLMonitor object. The available actions are:

77

IBX for Lazarus User Guide

tfQPrepare, tfQExecute, tfQFetch, tfError, tfStmt, tfConnect, tfTransact, tfBlob, tfService, tfMisc

7.4.1.2 SQL Reports

The TIBSQLMonitor OnSQL event handler is used to report each SQL action as a text message.
Define a suitable event handler to receive text reports. These can be written to stdout, some log file
or added to a TMemo for on screen reporting. The TIBSQLMonitor TraceFlags determine which
reported actions results in OnSQL handler calls.

7.4.1.3 Application Monitoring

Once a TIBSQLMonitor has been enabled, its output is available to other applications running on
the same computer. Under Unix derivatives, this is limited to other applications running under the
same user.

A monitoring application requires only a TIBSQLMonitor component. No other IBX component need
be included in the application. Otherwise, the TraceFlags and OnSQL event handler are used
identically to in application monitoring.

Note: if more than one source application is active, the monitoring application will report both sources and
cannot readily filter one and not the other.

7.4.2 Examples

There are two simple example applications used here to show the power of TIBISQLMonitor.
These are located in “ibx/examples/isqlmonitor”

7.4.2.1 Integrated Monitoring

This is a minor change to the Employee example and adds a second "Monitor Form" to record a
selected set of SQL events in a TMemo journal. The events monitored can be changed by
changing the trace options in the TIBDatabase.

7.4.2.2 Remote Monitoring

This example show how TIBISQLMonitor can be used to monitor another application. This
application comprises one form containing a single TMemo used to record the SQL event journal.
Run it at the same time as IntegratedMonitoring and you will see the SQL event journal here as
well. Note that what is monitored is controlled from the IntegratedMonitoring application which sets
the monitored events in its trace flags and must call "EnableMonitoring" for any monitoring to take
place.

7.5 TIBDatabaseInfo

Firebird provides access to database properties and statistics and this access is supported in IBX
through the TIBDatabaseInfo component.

To use this component simply drop it on to a form and link it to the database for which information
is required. You can have more than one TIBDatabaseInfo component linked to the same
database.

At run time, the component properties are used to get the current state of each property and
statistic available. These are:

78

 IBX Support Components

DBFileName Database File Name

DBSiteName Database site name

Allocation Number of database pages allocated

BaseLevel Database Version (level) number

DBImplementationNo Database Implementation Number

NoReserve Is space reserved for backup records

ODSMinorVersion ODS minor version number

ODSMajorVersion ODS version number

PageSize Number of bytes per page

Version Database implementation version no.

CurrentMemory Amount of server memory (in bytes) currently in use

ForcedWrites Number specifying the mode in which database writes are
performed (0 for asynchronous, 1 for synchronous)

MaxMemory Maximum amount of memory (in bytes) used at one time since
the first process attached to the database

NumBuffers Number of memory buffers currently allocated

SweepInterval Number of transactions that are committed between “sweeps” to
remove database record versions that are no longer needed

UserNames List of Logged in users

Fetches Number of reads from the memory buffer cache

Marks Number of writes to the memory buffer cache

Reads Number of page reads

Writes Number of page writes

BackoutCount Number of removals of a version of a record by table. Formatted
as a string list (see below).

DeleteCount Number of database deletes since the database was last
attached by table. Formatted as a string list (see below).

ExpungeCount Number of removals of a record and all of its ancestors, for
records whose deletions have been committed by table.
Formatted as a string list (see below).

InsertCount Number of inserts into the database since the database was last

79

IBX for Lazarus User Guide

attached by table. Formatted as a string list (see below).

PurgeCount Number of removals of old versions of fully mature records
(records that are committed, so that older ancestor versions are
no longer needed) by table. Formatted as a string list (see
below).

ReadIdxCount Number of reads done via an index since the database was last
attached by table. Formatted as a string list (see below).

ReadSeqCount Number of sequential table scans (row reads) done on each table
since the database was last attached by table. Formatted as a
string list (see below).

UpdateCount Number of database updates since the database was last
attached by table. Formatted as a string list (see below).

DBSQLDialect Database SQL Dialect

ReadOnly True if database is read only

7.5.1 Per Table Counts

Several of the above properties return database information as a string list giving the count per
table. Each line is in the format:

<Relation ID>=<count>

The <Relation ID> is an integer and may be resolved to a table name using the RDB$RELATIONS
table. For example, the SQL query:

SELECT trim(r.RDB$RELATION_NAME) as RDB$RELATION_NAME
FROM RDB$RELATIONS r Where r.RDB$RELATION_ID = ?

may be used to look up the table name from the RDB$RELATIONS table.

7.6 TIBExtract

This component allows the extract of database metadata. The component is intended to be
compliant with all Firebird extensions to the DDL up to and including Firebird 3.

The “ibx/examples/fbsql” example provides an example of the use of this component in a console
mode application.

To use: at design time simply drop the component on to a form and, in the Object Inspector, link it
to the required TIBDatabase.

At run time, the ExtractObject method may be used at any time when the database is connected,
and in order to extract selected metadata.

procedure ExtractObject(ObjectType : TExtractObjectTypes; ObjectName : String = '';
 ExtractTypes : TExtractTypes = [])

80

 IBX Support Components

After the method has completed, the TIBExtract.Items string list property will hold the extracted
metadata.

The extract object types determine the scope of the metadata extracted, while the Extract Type set
further refines what is generated:

Extract Object Extract Type Metadata

eoDatabase The whole database schema

etData The whole database schema plus the data as DML Insert
statements immediately after the table definitions. This
include binary Blobs (see 7.6.1) and Array data (see
7.6.2) in text format.

eoDomain etDomain All Domains

etTable Domains used in the specified table

eoTable Specified table or all tables if no table given

etDomain Adds domains defined for the table

etIndex Adds indexes defined for the table

etForeign Adds Foreign Key Constraints defined for the table

etCheck Adds Check Constraints defined for the table

etTrigger Adds Table Triggers defined for the table

etGrant Adds Table Grants defined for the table

etData Adds table data as DML INSERT statements.

eoView List all views or just the one given by the ObjectName

etTrigger Adds Triggers defined for the view

etGrant Additionally includes grants on the View and to any
triggers.

eoProcedure List all Procedures or just the one given by the
ObjectName

etGrant Additionally includes grants to and on the procedure.

81

IBX for Lazarus User Guide

Extract Object Extract Type Metadata

eoFunction List all Functions or just the one given by the
ObjectName

eoGenerator List all Generators or just the one given by the
ObjectName

etData Additionally includes an “ALTER SEQUENCE” statement
to set the generator to the current value

eoException List all Exceptions or just the one given by the
ObjectName

eoBLOBFilter List all Blob Filters or just the one given by the
ObjectName

eoRole List all Roles or just the one given by the ObjectName

eoTrigger List all Triggers or just the one given by the ObjectName

etTable List all Triggers for the ObjectName (table name)

etGrant Additionally includes grants to the Trigger

eoForeign List all Foreign Keys or just the one given by the
ObjectName

etTable List all Foreign Keys for the ObjectName (table name)

eoIndexes List all indexes or just the one given by the ObjectName

etTable List all indexes for the ObjectName (table name)

eoChecks List all Check Constraints or just the one given by the
ObjectName

etTable List all Check Constraints for the ObjectName (table
name)

eoData Lists table data as DML INSERT statements for the
specified table.

When an entire database is extracted, the order of objects is:

82

 IBX Support Components

• Commented out CREATE DATABASE statement
• Filters
• Functions
• Domains
• Tables
• Data (if requested)
• Indexes
• Foreign Key constraints
• Generators including setting the value if requested
• Views
• Check Constraints
• Exceptions
• Create Procedure Stubs
• Triggers
• Alter Procedure statements to add procedure body
• Grants

This order is important to avoid dependency problems. The data is added as soon as the tables
have been defined. This avoids problems with Foreign Key and check constraints without having to
add the data in dependency order.

Procedure stubs are created before triggers to enable triggers to use procedures. However, the
procedures cannot be fully defined until the triggers have been defined. Otherwise, an error will
occur if a stored procedure is used to update a writeable views; views are only writeable once
triggers have been defined.

The store procedure bodies are also added in dependency order, as a stored procedure may
reference a procedure in a select query. This is only valid once the procedure has been defined
and includes a SUSPEND statement.

7.6.1 Extract of Binary Blobs

TIBExtract exports binary blobs in a simple XML format and as hexadecimal characters. For
example:

<blob subtype="0">
89504E470D0A1A0A0000000D4948445200000122000000AE0803000000A565F09300000015504C54
45FFFFFFCE1124CC0005EDB8BBEEBCBFCD0016E1858B135C5E220000018949444154789CEDDAB10D
C3301004415AA4D47FC97607133E04EF5470D8F8D69AB5AF0F5C7B78E2B4125189A84454222A1195
884A4425A2125189A84454222A1195884A4425A2125189A84454222A1195884A4425A2125189A844
54222A1195884A4425A2125189A84454222A1195884A4425A2125189A84454222A1195884A4425A2
125189A84454222A1195884A4425A2125189A84454222A1195884A4425A2125189A844749CE84C6F
DCA3CE732BD1FD9CD98DEB9AC542BF46C3139727FEBB125189A84454222A1195884A4425A2125189
A84454222A1195884A4425A2125189A84454222A1195884A4425A2125189A84454222A1195884A44
5DB0A8231F4D5F2DDF70071DD6A9984A4425A2125189A84454222A1195884A4425A2125189A84454
222A1195884A4425A2125189A84454222A1195884A4425A2125189A84454222A1195884A4425A212
5189A84454222A1195884A4425A2125189A84454222A1195884A4425A2125189A84454222A119588
4A4425A2125189A84454222A1195884A4425A21724FA0255D0459DFD53A3DD0000000049454E44AE
426082
</blob>

In the above example, a binary blob of subtype '0' is formatted as lines of hexadecimal characters.
It is terminated by the </blob> end tag. White space is intended to be ignored when the blob data is
read back in. There are always an even number of hexadecimal characters on each line.

83

IBX for Lazarus User Guide

The above can be placed in a DML statement instead of a placeholder for a blob value. For
example:

INSERT INTO MyTable (KeyValue,BlobData) Values(1,<blob subtype="0">
89504E470D0A1A0A0000000D4948445200000122000000AE0803000000A565F09300000015504C54
...
</blob>);

7.6.2 Extract of Array Data

TIBExtract exports array data in a similar simple XML format. For example:

<array dim = "1" sqltype = "448" length = "60" relation_name = "JOB" column_name =
"LANGUAGE_REQ" charset = "NONE" bounds="1:5">

 <elt ix="1">Japanese
</elt>
 <elt ix="2">Mandarin
</elt>
 <elt ix="3">English
</elt>
 <elt ix="4">
</elt>
 <elt ix="5">
</elt>
</array>

The above is more complex than a blob and reflects the structural information that is necessary to
define an array. The above example comes from the example employee database and is the value
of a LANGUAGE_REQ column in the JOB table.

The “array” tag identifies:

• dim: the number of dimensions in the array

• sqltype: the SQL type of the array data (using blr type codes)

• length: the size of each array element in bytes.

• relation_name: the name of the table in which the array is defined.

• column_name: the name of the column in that table.

• charset: the name of the character set (text data only)

• bounds: a comma separated list of lower and upper bound pairs, one pair for each
dimension. Each pair is separated by a ':' character.

The array element values are then nested within “elt” tags. The first level element tag is for the first
dimension, and provides its index, and then so on. The inner set of “elt” tags encloses the value of
the array element.

For example, in a 2D array:

<array dim="2" ... bounds="1:5,1:2">
 <elt ix="5">
 <elt ix="2">English</elt>
 <elt>
</array>

84

 IBX Support Components

In the above, a single element is defined with co-ordinated (5,2).

85

 Using Firebird Blobs

8
Using Firebird Blobs

Binary Large Objects (Blobs) are containers for almost unlimited amounts of binary data held within
a Firebird Database. In practice, Blobs are limited by the database architectural limits and available
disk storage but, perhaps the most important point is that their individual size limit is not part of the
metadata. IBX supports the use of Firebird Blobs.

8.1 Blob Types

From the IBX viewpoint, there are two types of Firebird Blob:

• Text mode Blobs (sub type 1) that consist of character data in known character set (e.g.
UTF8), or

• Binary mode Blobs for which the data type is unknown to IBX.

Note: Firebird allows for many different Blob types in addition to text blobs without giving any semantics to
them. IBX does not impose any additional semantics on non-text Blob types.

8.1.1 Text Mode Blobs

Text Mode Blobs are represented by a TIBMemoField dataset field type. This is a TBlobField
descendent and provides access to the Blob Data as AnsiStrings:

• Use the AsString property to both read and write the entire text blob. On reading, the
AnsiString code page corresponds to the character set used to transfer the Blob. On
writing, transliteration may occur if the AnsiString code page of the string is different to that
which corresponds to the character set used to transfer the Blob.

• Use the SaveToFile method to save the contents of a text blob to a file.

• Use the LoadFromFile method to load the contents of a text blob from a file.

87

IBX for Lazarus User Guide

The data aware control TMemo, can be used to both display and edit the text in a text blob.

In practice, the main difference between TIBMemoFields and basic string fields is that the former
has no strong limits on how long the string is, and which is limited only by architectural constraints.

8.1.2 Binary Blobs

Binary blobs are used for many different purposes including holding image data. Binary Blobs are
represented by the TBlobField dataset field type:

• Use the AsString property to both read and write the entire text blob. The string is always
read as an untyped string and, on write, any string code page is ignored.

• Use the SaveToFile method to save the contents of a binary blob to a file.

• Use the LoadFromFile method to load the contents of a binary blob from a file.

If the Blob contains image data, then the TDBImage control may be used to display and update the
Blob data.

8.2 Stream Mode access to Blobs

IBX also allows Blob Fields to be read and updated using the TStream class. IBX datasets give
access to a Blob stream using the CreateBlobStream method inherited from TDataset. i.e.

function CreateBlobStream(Field: TField; Mode: TBlobStreamMode): TStream;

The function requires a TBlobField or a TIBMemoField to identify the blob field. The mode
indicates whether the stream is for reading (bmRead) or writing (bmWrite). Read/Write access is
also possible. The dataset must be in Edit mode if the Blob is to be written to.

A Blob stream may be read from or written to in the same way as any other TStream descendent.

A Blob updated using a Blob stream updates the data in the current row. This must be “posted” in
order to be written to the database.

For example:

var S, F: TStream;
begin
 MyDataset.Edit;
 S := MyDataset.CreateBlobStream(MyBlobField,bmWrite);
 F := TFileStream.Create('someimage.png',fmOpenRead);
 S.CopyFrom(F,0);
 MyDataset.Post;
 S.Free;
 F.Free;

88

 Using Firebird Arrays

9
Using Firebird Arrays

Firebird allows you to create arrays of data types. Using an array enables multiple data items to be
stored in a single column. Firebird can perform operations on an entire array, effectively treating it
as a single element, or it can operate on an array slice, a subset of array elements. An array slice
can consist of a single element, or a set of many contiguous elements.

Starting with IBX2, IBX now offers full support for Firebird Arrays:

• The Firebird Language Bindings in the fbintf package provide both IArray and
IArrayMetaData interfaces. The former is used to access and manage an array or array
slice, while the latter can be queried to find out information about the array such as its type,
number of dimensions, etc.

• IBX itself now includes TIBArrayField. This is a TField descendent and, like any other
TField descendent (e.g. TStringField) provides the means to access an array element
when it is returned by a TDataSet descendent as a field of the current row. TIBArrayField
provides the IArray interface as one of its properties enabling direct access to the array.

• The IBControls Package now includes a TIBArrayGrid visual control (see 12.5). This is a
TCustomStringGrid descendent and may be used to display and edit an array element.
Examples are provided for both one and two dimensional arrays.

The IArray interface is documented as part of the fbintf package.. See the Firebird Pascal API
Guide chapter 8.

9.1 Defining an Array Element

This is fully described in the Firebird Document. For example:

 Alter Table MyData (
 ...
 MyArray VarChar(16) [0:16, -1:7] Character Set UTF8

89

IBX for Lazarus User Guide

);

An array may have a different set of values for each row. In the above example, a two dimensional
array of strings is defined. The first index may vary from 0 to 16 and the second from -1 to 7.

9.2 TIBArrayField

TIBArrayField is used and behaves much the same as any other TField Descendent. It can be
created in the IDE using the Fields Editor and saved as part of a form (and then accessed as a
property of the form) or dynamically, when a TIBCustomDataSet descendent (e.g. TIBTable,
TIBQuery, etc.) is opened (it can then be accessed (e.g.) using the “FieldByName” method).

TIBArrayField defines the following additional properties:

ArrayID: TISC_QUAD This provides access to the Firebird internal array identifier
stored in the row itself. This is not normally of direct interest to
users.

ArrayIntf: IArray This provides access to the array interface used to access and
update the array element. When the field is null, this returns an
empty array and setting an element of this array to any non-
empty value will make the field non-null after the record has
been posted.

Assigning an empty array to this property provides an alternative
means to setting the field to null. (Setting the field IsNull property
to true is the recommended method).

ArrayDimensions: integer Returns the number of dimensions in the array.

ArrayBounds: TArrayBounds This is a (pascal) dynamic array and returns an element for each
dimension in the array, providing the upper and lower bound for
that dimension.

TIBArrayField also provides an additional method:

function CreateArray: IArray;

This may be used to obtain an interface to a new empty array and which is compatible with the
field. Once populated, it can be assigned to the ArrayIntf property and its contents will be saved as
the value of the array field once the dataset has been “posted”.

Note: it is possible to retain a copy of the ArrayIntf and access it after the dataset has been scrolled.
However, an exception is raised if an attempt is made to alter the contents of an array that is not linked to the
current row of its TDataSet.

90

 Using Firebird Services

10
Using Firebird Services

The Firebird Services API was introduced in InterBase 6.0 and is available in all versions of
Firebird. It supports:

• Access to server and per database properties and statistics
• Database Backup and Restore
• Security Database Management (user credentials)
• Database Validation and Error Recovery
• Database configuration parameter management.

These functions correspond to the functionality provided by the Firebird command line utilities
gbak, gfix and gsec.

IBX provides access to the services API through a set of non-visual components located on the
Firebird Admin palette. Each component is focused on a specific subset of the Services API. An
example program illustrates the use of each of the Firebird Admin components. This is located in
“ibx/examples/services”.

10.1 Firebird Admin Component Overview

TIBBackupService The backup service supports database backup to gbak format
archives. Both server side and client side backup file
locations are supported.

TIBRestoreService The restore service supports database restore from gbak
format archives. Both server side and client side backup file
locations are supported.

TIBConfigService The configuration service allows database parameters to be
modified, including whether the database is online, sync

91

IBX for Lazarus User Guide

versus async writes, etc.

TIBServerProperties This service retrieves various server properties including the
server version information, server parameters and the current
status of database attachments.

TIBLogService This service supports the retrieval of the server log file
contents.

TIBStatisticalService This service supports the retrieval of per database statistics.

TIBSecurityService This service supports management of the User Security
Database.

TIBValidationService This service supports the invocation of various database
repair actions, including validation and sweep. Limbo
Transactions can also be resolved.

10.2 Common Service Properties

All Firebird Admin components derive from a common ancestor class and are used similarly. A
common service editor is available at design time to set the login parameter defaults. The following
properties are in common:

Active Set to true to attach to the server and establish a connection with it.

Set to false to terminate an active connection.

LoginPrompt Set to true to enable use of the built-in login prompt dialog.

Params Holds the login user name and password, as a list of keyword equals
string (e.g. user_name=SYSDBA, password=masterkey). Is is
recommended that the password is not set at design time. A component
editor is available to set each service's parameters.

Protocol Determines the connection type (local, TCP,SPX or Named Pipe). Only
the first two should be considered for use in current systems.

ServerName The (domain) name of the server.

The public property ServiceIntf exposes the IServiceManager interface used to communicate with
the server. This interface is available (non-nil) when Active is true. It can be assigned between
Firebird Admin components allowing them to share the same connection without having to
separately log in for each separate service.

Note: setting active to false disconnects the connection and invalidates the shared interface.

92

 Using Firebird Services

10.3 The Backup Service

The backup service supports database backup to gbak format archives. Both server side and client
side backup file locations are supported. Before the backup is started, the common properties must
be set plus the following:

BackupFile Server Side Backups only: This is a list full pathnames to one or more
backup files on the server. When more than one is specified, all but the
last should be followed by “=nnn” where nnn is the maximum length in
bytes for the file.

BackupFileLocation ServerSide or ClientSide. This determines whether the backup is to a
file located on the server side or on the client side of the connection.

BlockingFactor See gbak documentation for non-zero values (probably obsolescent)

DatabaseName Alias of or full pathname for database on the server.

Options See gbak documentation for interpretation of each option.

Verbose Server Side Backups only: if true then additional text messages are
generated.

10.3.1 Server Side Backup

The following code illustrates how a server side backup is performed after the above properties
have been set:

 IBBackupService1.Active := true;
 IBBackupService1.ServiceStart;
 while not IBBackupService1.Eof do
 writeln(IBBackupService1.GetNextLine);
 Application.ProcessMessages
 IBBackupService1.Active := false; {only if you no longer need the connection}

Once the service has been started, running the service until completion is a simple loop checking
for “EOF”, while calling the GetNextLine method. This returns lines of text from the server (most
relevant in verbose mode). In this example, they are written to stdout.

10.3.2 Client Side Backup

The following code illustrates how a client side backup is performed after the above properties
have been set:

var bakfile: TFileStream;
begin
 bakfile := TFileStream.Create('<path to backup file>',fmCreate);
 try
 IBBackupService1.Active := true;
 IBBackupService1.ServiceStart;
 while not IBBackupService1.Eof do

93

IBX for Lazarus User Guide

 begin
 IBBackupService1.WriteNextChunk(bakfile);
 Application.ProcessMessages
 end;
 finally
 bakfile.Free;
 end;
end;

The above is very similar to server side case, except that the service user has to provide a TStream
(in the above TFileStream) as the destination of the backup archive. Instead of looking on
GetNextLine, a client side backup loops on WriteNextChunk.

10.4 The Restore Service

The Restore service supports database restore from gbak format archives. Both server side and
client side backup file locations are supported. Before the restore is started, the common
properties must be set plus the following:

BackupFile Server Side Restores only: This is a list full pathnames to one or more
backup files on the server. When more than one is provided, these are
read in the same order that the are defined

BackupFileLocation ServerSide or ClientSide. This determines whether the restore is from a
file located on the server side or on the client side of the connection.

DatabaseName A list of Aliases of or full pathnames for database on the server.

Options See gbak documentation for interpretation of each option. This must
include either CreateNewDB (default) or Replace, but not both.

PageBuffers See gbak documentation

PageSize See gbak documentation

Verbose If true then additional text messages are generated.

10.4.1 Server Side Restores

The following code illustrates how a server side restore is performed after the above properties
have been set:

 IBRestoreService1.Active := true;
 IBRestoreService1.ServiceStart;
 while not IBRestoreService1.Eof do
 begin
 writeln(IBRestoreService1.GetNextLine);
 Application.ProcessMessages
 end;

94

 Using Firebird Services

Once the service has been started, running the service until completion is a simple loop checking
for “EOF”, while calling the GetNextLine method. This returns lines of text from the server (most
relevant in verbose mode). In this example, they are written to stdout.

10.4.2 Client Side Restores

The following code illustrates how a client side restore is performed after the above properties
have been set:

var bakfile: TFileStream;
 line: string;
begin
 bakfile := TFileStream.Create('<path to backup file>',fmOpenRead);
 try
 IBRestoreService1.Active := true;
 IBRestoreService1.ServiceStart;
 while not IBRestoreService1.Eof do
 begin
 IBRestoreService1.SendNextChunk(bakfile,line);
 if line <> '' then
 writeln(line);
 Application.ProcessMessages
 end;
 finally
 bakfile.Free;
 end;
end;

The above is very similar to server side case, except that the service user has to provide a TStream
(in the above TFileStream) as the source of the backup archive. Instead of looking on
GetNextLine, a client side backup loops on SendNextChunk. This both reads from the stream and
may return a line of text when one is received from the server.

10.5 The Configuration Services

The TIBConfigService must also have its common properties set as described above. Otherwise it
comprises a set of methods, each of which performs a specific action.

ShutdownDatabase Puts the database into its shutdown state according to the selected
options and within the given “wait” time (seconds). Once shutdown,
only the SYSDBA user can log into the database.

BringDatabaseOnline Puts the database into its online state (reverse of shutdown).

SetSweepInterval Sets the automatic sweep interval

SetDBSqlDialect Sets the default database SQL dialect (1 or 3)

SetPageBuffers Set the default number of cache buffers to the specified number.

ActivateShadow Activates a database “shadow file” See the Firebird Documentation for
more information on database shadow files.

95

IBX for Lazarus User Guide

SetReserveSpace Configure the database to fill data pages when inserting new records
(true), or reserve 20% of each page for later record deltas (true)

SetAsyncMode Toggles between async writes (true) and sync writes (false).

SetReadOnly Sets read only or read/write mode.

10.6 The Server Properties Service

This service retrieves various server properties including the server version information, server
parameters and the current status of database attachments. The information returned is divided up
into:

• Server Version Information
• Active Database Information, and
• Configuration Parameters

Each information set has a corresponding method to request the current information, which then
sets the values of the linked property. The property may then be read to access the requested
information. For example:

var i: integer;
begin
 with IBServerProperties1 do
 begin
 Active := true;
 FetchVersionInfo;
 writeln('Server Version = ' + VersionInfo.ServerVersion);
 writeln('Server Implementation = ' + VersionInfo.ServerImplementation);
 writeln('Service Version = ' + IntToStr(VersionInfo.ServiceVersion));

 FetchDatabaseInfo;
 writeln('No. of attachments = ' + IntToStr(DatabaseInfo.NoOfAttachments));
 writeln('No. of databases = ' + IntToStr(DatabaseInfo.NoOfDatabases));
 for i := 0 to DatabaseInfo.NoOfDatabases - 1 do
 writeln('DB Name = ' + DatabaseInfo.DbName[i]);

 FetchConfigParams;
 writeln('Base Location = ' + ConfigParams.BaseLocation);
 writeln('Lock File Location = ' + ConfigParams.LockFileLocation);
 writeln('Security Database Location = ' + ConfigParams.SecurityDatabaseLocation);
 end;
end;

10.7 The Log Service

This is a simple service that may be used to retrieve the current server log file contents. For
example:

 with IBLogService1 do
 begin
 Active := true;
 ServiceStart;
 while not Eof do
 begin
 writeln(GetNextLine);

96

 Using Firebird Services

 Application.ProcessMessages;
 end;
 end;

10.8 The Database Statistics Services

This service supports the retrieval of per database statistics as text data. The use of this service is
very similar to the Log Service except that:

• The DatabaseName property must be set to alias or full path name on the server of the
database for which the statistics are requested.

• The Options property must be set to identify which statistics are requested.

Otherwise, statistics retrieval is the same as for the log file. For example:

 with IBStatisticalService1 do
 begin
 DatabaseName := 'myDatabase';
 Options := [HeaderPages];
 Active := true;
 ServiceStart;
 while not Eof do
 begin
 writeln(GetNextLine);
 Application.ProcessMessages;
 end;
 end;

The above returns the Header Page statistics. The options available are:

HeaderPages Request only the information in the database header page

DataPages Request statistics for user data pages

IndexPages Request statistics for user index pages

SystemRelations Request statistics for system tables and indexes — in addition to user
tables and indexes

10.9 The Security Service

This service supports management of the User Security Database. It supports:

• The listing of all User Names, and other user identification information
• Adding New Users
• Modifying Existing Users (including changing passwords)
• Deleting Users.

97

IBX for Lazarus User Guide

10.9.1 Listing all User Names

The DisplayUsers method is used to retrieve the list of user names and other user identification
information to the UserInfo property. This information can then be displayed to the user. For
example:

var i: integer;
begin
 with IBSecurityService1 do
 begin
 Active := true;
 DisplayUsers;
 for i := 0 to UserInfoCount - 1 do
 with UserInfo[i] do
 begin
 writeln('User ID = ',UserID);
 writeln('Group ID = ',GroupID);
 writeln('User Name = ',UserName);
 writeln('First Name = ', FirstName);
 writeln('Middle Name = ', MiddleName);
 writeln('Last Name = ', := LastName);
 end;
 end;
end;

10.9.2 Adding a User

The AddUser method is used to add a user to the Security Database. The TIBSecurityService
UserName and Password properties should be set before this method is called to set the user name
and password, respectively. The complete set of properties that may be set are:

UserName User (or Login) Name

Password The user's password

FirstName The user's first name

MiddleName The user's middle name

LastName The user's last name

UserID The Unix UID

GroupID The Unix GID

The following illustrates the use of the AddUsers method:

 with IBSecurityService1 do
 begin
 Active := true;
 UserName := NewUserName;
 Password := NewPassword;
 AddUser;
 end;

98

 Using Firebird Services

10.9.3 Updating User Details

The ModifyUser method is used to modify a users login details in the Security Database. The
UserName property acts as the key identifying the user. The remaining properties listed above in
10.9.2 may be set as required to update the corresponding entry in the database. For example:

 with IBSecurityService1 do
 begin
 Active := true;
 UserName := 'SYSDBA';
 FirstName := 'Donald';
 LastName := 'Duck';
 ModifyUser;
 end;

10.9.4 Deleting a User

The DeleteUser method is used to remove a users login details from the Security Database. The
UserName property acts as the key identifying the user. For example:

 with IBSecurityService1 do
 begin
 Active := true;
 UserName := 'ALICE';
 DeleteUser;
 end;

10.10 The Validation Service

This service supports the invocation of various database repair actions, including validation and
sweep. Limbo Transactions can also be resolved. It is effectively two services in one. The first case
is used to perform a variety of repair actions. The second is more specific to resolving Limbo
Transactions.

10.10.1 Database Repair

The following Database Repair services are available and selected by the service's options
property:

Title Option Description

List Limbo Transactions LimboTransactions Returns a text list of limbo transactions

Check Database CheckDB Request read-only validation of the
database, without correcting any
problem

Ignore all checksum errors IgnoreChecksum Refines database check

Kill Shadow Files KillShadows Remove references to unavailable
shadow files

Mend Database MendDB Mark corrupted records as unavailable,

99

IBX for Lazarus User Guide

so subsequent operations skip them

Sweep Database SweepDB Request database sweep to mark
outdated records as free space;

Validate Database ValidateDB Locate and release pages that are
allocated but unassigned to any data
structures

Full Database Validation ValidateFull Check record and page structures,
releasing unassigned record fragments.
Use with Validate Database

For example:

 with IBValidationService1 do
 begin
 DatabaseName := 'MyDatabase';
 Options := [ValidateDB,ValidateFull];
 Active := true;
 ServiceStart;
 while not Eof do
 begin
 writeln(GetNextLine);
 Application.ProcessMessages;
 end;
 end;

10.10.2 Resolving Limbo Transactions

There are two steps to the resolution of limbo transactions. The first step retrieves a list of all limbo
transactions. The second step commits or rolls back each transaction as required.

The FetchLimboTransactionInfo method is used to retrieve list of limbo transactions. After
completion, the list may be found in the LimboTransactionInfo property. For example:

var i: integer;
begin
 with IBValidationService1 do
 begin
 Active := true;
 ServiceStart;
 FetchLimboTransactionInfo;
 for i := 0 to LimboTransactionInfoCount - 1 do
 with LimboTransactionInfo[i] do
 begin
 write('ID = ',ID);
 if MultiDatabase then
 write(', Multi DB')
 else
 write(' ,Single DB');
 write(', Host Site = ', HostSite);
 write(', Remote Site = ', RemoteSite);
 write(', Database Path = ', RemoteDatabasePath);
 write(', State = ', StateToStr(State));
 writeln(', Advise = ', AdviseToStr(Advise));
 end;

100

 Using Firebird Services

 end;
end;

where

function StateToStr(State: TTransactionState): string;
begin
 case State of
 LimboState:
 Result := 'Limbo';
 CommitState:
 Result := 'Commit';
 RollbackState:
 Result := 'Rollback';
 else
 Result := 'Unknown';
 end;
end;

function AdviseToStr(Advise: TTransactionAdvise): string;
begin
 case Advise of
 CommitAdvise:
 Result := 'Commit';
 RollbackAdvise:
 Result := 'Rollback';
 else
 Result := 'Unknown';
 end;
end;

This list identifies each limbo transaction and its current state, it also suggests an action (advises).
The user can review the list and set the TLimboTransactionInfo.Action property to a desired
outcome.

The limbo transactions may then be resolved by setting the GlobalAction property and then
calling the FixLimboTransactionErrors method.

The GlobalAction determines how FixLimboTransactionErrors processes the limbo transactions
and may be set to:

CommitGlobal All limbo transactions are resolved by committing the transaction.

RollbackGlobal All limbo transactions are resolved by rolling back the transaction.

RecoverTwoPhaseGlobal All limbo transactions are resolved by performing a two phase commit
of the transaction.

NoGlobalAction Limbo transactions are resolved by either committing or rolling back
the transaction, as specified by each limbo transaction's Action
property.

For example:

 with IBValidationService1 do

101

IBX for Lazarus User Guide

 begin
 GlobalAction := NoGlobalAction
 FixLimboTransactionErrors;
 while not Eof do
 begin
 writeln(GetNextLine);
 Application.ProcessMessages;
 end;
 end;

102

 Personal Databases

11
Personal Databases

A Personal Database is one held on the same system on the client and, where possible, file
system access rights ensure that only the owner has access to the data. Instead of database
access using a remote server running as a separate process, the server is embedded in the client
and is both inherits and is constrained by the user's access rights.

In Firebird 2.5 and earlier, the embedded server is deployed as a separate package, while in
Firebird 3 the same code libraries can be as part of a standalone server or as an embedded server.

The embedded server will be used if available and the database pathname is to a local file without
a preceding server name. Access to the database will fail if the user has insufficient access rights.

The fbintf package provides direct and largely transparent support for use of the embedded server.
See section 4.10 of the Firebird Pascal API Guide for more information. Deployment Guidelines are
available in chapter 13 of the same guide.

IBX additionally recognises the case where a local database path has been specified but a
database open error prohibits use of the embedded server. It will automatically prefix the database
path with “localhost:” and try again hoping to use the local server, if available.

IBX also provides additional support for Personal Databases that are accessible via the embedded
server.

11.1 TIBLocalDBSupport

TIBLocalDBSupport is non-visual component supporting a TIBDatabase and intended to simplify
the use of the embedded firebird server for Personal Database Applications, on both Linux and
Windows platforms. The TIBLocalDBSupport component supports GUI programs, while the
TIBCMLocalDBSupport provides the same support for console mode programs. Example
applications are provided for both GUI and console mode in the ibx/examples/local-employeedb
directory.

103

IBX for Lazarus User Guide

When enabled, TIBLocalDBSupport provides:

• Verification that the embedded Firebird Server is in use.

• Setup of the FIREBIRD environment variable for the embedded server.

• DatabaseName, and login parameters management.

• Use of the Firebird Services API to initialise an empty local database from a gbak format
Firebird archive.

• Use of the Firebird Services API to save the current local database to a gbak format
Firebird archive.

• Use of the Firebird Services API to replace the contents of the current local database from
a gbak format Firebird archive.

• Use of the TIBXScript Engine for automated field upgrade of the local database.

To use the component, simply drop it onto a form or data module and link it to the TIBDatabase.

11.1.1 Properties

Database reference to the TIBDatabase component for the local database

DatabaseName filename (no path) to use for the Firebird Database file.

EmptyDBArchive filename (optional path) holding the database initialisation archive. May
either be absolute path or relative to shared data directory.

Enabled when false component does nothing

FirebirdDirectory Full path to directory holding firebird.conf. May either be absolute path
or relative to the shared data directory. If empty, defaults to shared
data directory.

Name Component Name

Options • iblAutoUpgrade: Automatically apply upgrade when database
schema version is lower than required.

• IblAllowDowngrade: Automatically apply downgrade when
available to schema version compatible with the required
version.

• iblQuiet: true then no database overwrite warnings

RequiredVersionNo The schema version number required by the application.
TIBLocalDBSupport will normally try to upgrade/downgrade the
schema to satisfy this requirement.

104

 Personal Databases

UpgradeConfFile Path to upgrade configuration file. May either be absolute path or
relative to the shared data directory.

VendorName Used to construct path to Database Directory.

Note that at design time paths may use '/' or '\' as directory separator. At run time, they must be specified
using the appropriate Directory Separator for the current platform.

11.1.2 Events:

OnGetDatabaseName The database path name is normally computed automatically.
However, this event allows an application to inspect and override
the result.

OnNewDatabaseOpen called after the successful initialisation of an empty local database.

OnGetDBVersionNo called to get the current database schema version number. If this
event is not handled then schema upgrade/downgrade is never
performed.

OnGetSharedDataDir The shared data directory is normally computed automatically.
However, this event allows an application to inspect and override
the result.

11.1.3 Shared Data Directory

The shared data directory is the base directory for all static data files used by TIBLocalDBSupport.
This is determined as follows:

• Windows: the application executable's location.

• Unix: the application executable's location unless this is /usr/bin, /usr/local/bin, /usr/sbin
or /usr/local/sbin, when the shared data directory is set to /usr/share/<application name>
or /usr/local/share/<application name> depending on whether the application is in /usr or
/usr/local.

Note: that the <application name> is taken from sysutils.ApplicationName and defaults to the
filename of the application executable less any extension.

11.1.4 DatabaseName, and login parameters management

When TIBLocalDBSupport is in use, the TIBDatabase.DatabaseName property is ignored and
instead, it is generated algorithmically as:

• Windows: "User Application Directory"\VendorName\DatabaseName

105

IBX for Lazarus User Guide

• Unix: "User Home Directory"/."VendorName"/DatabaseName

The “DatabaseName” comes from the TIBLocalDBSupport.DatabaseName property.

The “VendorName” comes from the TIBLocalDBSupport.VendorName property. If the
TIBLocalDBSupport.VendorName property is left empty then Sysutils.VendorName is used. If this
is empty then no VendorName component is present in the path.

Note the use of a hidden directory under Unix.

If the generated DatabaseName is not appropriate then the TIBLocalDB.OnGetDatabaseName event
handler gives a chance to inspect it and change it to something different.

The Database Params are copied from the TIBDatabase component except that the “user_name”
and “password” parameters are removed if present. When running under Windows, the
“user_name” is then set to “SYSDBA” and the “password” to “masterkey”. Under Unix, these
parameters are omitted.

11.1.5 Database Initialisation

When the linked TIBDatabase connected property is set to “true”, TIBLocalDBSupport generates
the DatabaseName (as described above) and then if it does not correspond to an existing file,
TIBLocalDBSupport uses the Firebird Services API to create the database file from an “empty
database” archive in gbak format, or an SQL Script. In practice, the archive can contain both the
database metadata and initial table data. An SQL Script may also contain data inline compatible
with TIBXScript (see 7.1)

The “empty database” archive is given by the TIBLocalDBSupport.EmptyDBArchive property. This
should be a filename (with the .gbk extension or .sql extension) and may include an optional path.
Relative paths are interpreted as relative to the shared data directory.

For a gbak archive, the Services API (see 10.4) is then used to create the initial database from this
archive. The IBXScript component is used to create a database from an SQL Script. An error is
raised if the archive is not present.

The SQL script may or may not include a CREATE DATABASE SQL statement. If it does then the
file name is replaced with the required filename for the database. If no such statement is present
then one is generated using the required filename for the database and the character set specified
in the database parameters as the connection character set.

The local database can be re-initialised at any time by calling the TIBLocalDBSupport.
NewDatabase method.

11.1.6 Saving the Current Database

The current database contents can be saved at any time by a call to
TIBLocalDBSupport.SaveDatabase. The filename for the archive can be provided in the method
call. If empty, then the user is prompted to enter a filename (default extension .gbk).

The Services API (see 10.3) is then called to archive the database to the specified file in gbak
format.

106

 Personal Databases

11.1.7 Restoring the Database from an Archive

The local database can be overwritten (restored) from any archive in gbak format (including those
saved using the SaveDatabase method) by calling the TIBLocalDBSupport.RestoreDatabase
method. The filename for the source archive can be provide in the method call. If empty, then the
user is prompted to locate the file.

The Services API (see 10.4) is then called to restore the local database from the archive.

11.1.8 Database Schema Upgrade

A Software Application Update can also require a corresponding update to the database schema.
With embedded Firebird server applications where the user may not even be aware that a
database server is in use, it is important to have a means to field upgrade the database schema in
as seamless and automatic a manner as possible. TIBLocalDBSupport supports a suitable
mechanism using the TIBXScript engine (see 7.1).

The underlying idea is that the database schema comes with a version number given as a single
integer. The first version to be released is version 1, the second is version 2 and so on. The current
schema version number must be saved as data somewhere in the database. As this is database
schema dependent, TIBLocalDBSupport does not know how to determine the current database
schema number and instead relies upon the application responding to the OnGetDBVersionNo
event.

Each version of an application will have a maximum and minimum version of the database schema
that it can support, and it is expected to check that the schema version is acceptable in its
TIBDatabase OnConnect handler. However, before this handler is called, TIBLocalDBSupport will
itself check the current schema version against its RequiredVersionNo property (which should be
set to the maximum supported schema version no).

• If iblAutoUpgrade is given in the Options property and the current schema is less than the
Required Version no., then TIBLocalDBSupport will attempt to apply the upgrade rules to
raise the version number to that required.

• If iblAllowDowngrade is given in the Options property and the current schema is greater
than the Required Version no., then TIBLocalDBSupport will attempt to locate a suitable
backup archive and restore this as the current database. This case is usually only found in
the unlikely event of a failed upgrade and the user has installed an older version of the
software in order to recover from the problem.

The schema upgrade rules are read from the upgrade configuration file. This is a text file in “ini” file
format with the following sections:

[status]

This should have a single named value “current” giving the current database schema number as in
integer e.g.

current = 2

This should normally be set to the same value as the RequiredVersionNo property and acts as a
check to ensure that both are in sync.

107

IBX for Lazarus User Guide

[Version.nnn]

Where nnn is an integer with leading zeroes. For example, “Version.002” is the section read to
upgrade the database schema from version 1 to version 2. This section can contain the following
named values:

Name Type Use

Upgrade string Name and optional path to the SQL script used to
perform the upgrade. May either be absolute path
or relative to the upgrade configuration file. Either
forwards or back slashes may be used as the
path delimiter.

Msg string Text message displayed in progress dialog while
script is active. Defaults to “Upgrading Database
Schema to Version nnn”.

BackupDatabase yes/no If present and set to “yes” then a database
backup in gbak format is made before the
upgrade is performed. The backup file is located
in the same directory as the database file and is
given the same name as the database file with
the extension replaced with “.nnn.gbak”. Where
“nnn” is the current schema version number (i.e.
prior to running the upgrade script).

<Parameter Name> string Name and optional path to binary data file. May
either be absolute path or relative to the upgrade
configuration file. Either forwards or back slashes
may be used as the path delimiter.

For example:

[Version.002]
Msg = Upgrading to Version 2
BackupDatabase = yes
Upgrade = patches/02-patch.sql
mugshot = images/man.png.gz

Note that in the above, “mugshot” is intended to be used to resolve an Update, Insert or Delete
query parameter in the 02-patch.sql file. E.g.

Update EMPLOYEE Set Photo =:MUGSHOT Where Emp_no = 2;

This is only applicable to BLOB columns and the above is interpreted as update the EMPLOYEE
table where the Emp_no is “2” and set the value of the Photo column to the binary data contained
in the file “images/man.png.gz”. The “.gz” extension is recognised as a gzip compressed file and
decompressed before updating the table.

108

 Personal Databases

When the current database schema is more than one version number less than that required, the
upgrade rules are applied iteratively to upgrade the database to the required schema version.

11.2 Local EmployeeDB Example

The purpose of this example is to demonstrate the use of the TIBLocalDBSupport component. This
component is used with a TIBDatabase when the database is accessed using the Firebird
Embedded Server. TIBLocalDBSupport takes care of checking the environment and setting up
FIREBIRD environment variables and DB parameters. It also supports initialisation of the local
database from an archive in gbak format, plus save and restore of the local database. It can also
run SQL scripts to upgrade the database schema when a new software version is released.

The example can be found under: ibx/examples/local-employeedb/project1.lpi

See also console mode.

Before compiling and running the example, the Firebird embedded server must be installed. The
Chapter 13 of the Firebird Pascal API Guide for deployment guidelines for the embedded server.

11.2.1 Running the application

The example should just compile and run. An archive of the Firebird example employee database
is provided with the example. This will be used to create the initial database. It should then be
automatically upgraded to "version 2" using the scripts provided in the "patches" directory. (see
also the file upgrade.conf).

Note that you will not be prompted for a username/password. The embedded server uses normal file
permissions to control access. Otherwise you can edit the employee database as in the client/server version.

The local database will be created in:

• Linux: $HOME/.MWA Software/employee.fdb

• Windows: <User Application Data Folder>\MWA Software\employee.fdb

The File menu provides actions to save the current database to a gbak format archive, restore it
again (replacing the current database) or to restore the database to its initial state.

11.2.2 Console Mode

A console mode version of the example application is also provided under ibx/examples/local-
employeedb/ConsoleModeExample.lpi.

Like all IBX console mode applications, this uses the ibexpressconsolemode package. The
IBCMLocalDBSupport unit is used to provide the TIBCMLocalDBSupport compoent.

The application is similar to the above and uses the same archive database and upgrade scripts.
Instead of displaying the employee table, when run it will print out the first two rows.

109

 The IBX Controls

12
The IBX Controls

IBX 1.2 introduced a new Component Palette entry "Firebird Data Controls". This has four new
data aware controls dependent on IBX and which make use of the SQL Parser (see 7.3). In IBX2,
TIBArrayGrid was added.

The IBX Controls are:

• TIBLookupComboEditBox
• TIBDynamicGrid
• TIBTreeview
• TDBControlGrid
• TIBArrayGrid

TIBLookupComboEditBox is a TDBLookupComboBox descendent that implements
"autocomplete" of typed in text and "autoinsert" of new entries. Autocomplete uses SQL
manipulation to revise the available list and restrict it to items that are prefixed by the typed text
(either case sensitive or case insensitive). Autoinsert allows a newly typed entry to be added to the
list dataset and included in the available list items.

TIBDynamicGrid is a TDBGrid descendent that provides for:

• automatic resizing of selected columns to fill the available row length

• automatic positioning and sizing of a "totals" control, typically at the column footer, on a per
column basis.

• DataSet resorting on header row click, sorting the dataset by the selected column. A
second click on the same header cell reversed the sort order.

• Support for a "Panel Editor". That is on clicking the indicator column, the row is
automatically expanded and a panel superimposed on it. The panel can have any number

111

IBX for Lazarus User Guide

of child controls, typically data aware controls with the same datasource as the grid
allowing for editing of additional fields and more complex editors.

• Reselection of the same row following resorting.

• A new cell editor that provides the same functionality as TIBLookupComboEditBox. Its
properties are specified on a per column basis and allows for one or more columns to have
their values selected from a list provided by a dataset. Autocomplete and autoinsert are
also available. The existing picklist editor is unaffected by the extension.

TIBTreeView is a data aware TCustomTreeView.

TDBControlGrid is a lookalike rather than a clone for the Delphi TDBCrtlGrid. TDBControlGrid is a
single column grid that replicates a TWinControl - typically a TPanel or a TFrame in each row.
Each row corresponds to a row of the linked DataSource. Any data aware control on the replicated
(e.g.) TPanel will then appear to have the appropriate value for the row.

TIBArrayGrid is a data aware control derived from TCustomStringGrid and which may be used to
display/edit the contents of a one or two dimensional Firebird array Field.

Examples are provided to illustrate the use of the new controls.

12.1 TIBDynamicGrid

The TIBDynamicGrid is illustrated above using Firebird's example “employee” databases.

In use, it looks just like a TDBGrid and is a TDBGrid descendent. Any project that uses IBX and
TDBGrid can thus be quickly converted to using TIBDynamicGrid. The control uses SQL
Manipulation to manage column sorting.

The above example can be found in “ibx/examples/employee” and illustrates most of the benefits
of TIBDynamicGrid.

112

Illustration 11: The TIBDynamicGrid

 The IBX Controls

• Resize the form and you will see how the “Dept” column automatically grows/shrinks to
ensure that the grid always fills the available space and how the Salary “Total” control
(TDBText) moves so that it is always aligned with the grid. Column resizing is controlled at
design time by setting the AutoSizeColumn property for each column that it is to be
dynamically resized, with its design time width interpreted as the minimum column width. All
other column widths remain unchanged.

• Click on the “Started” column header (or any other column header) and the table will be
resorted by that column. A second click on the same header reverses the sort order.

• Select a row and press “F2”, or click on “Edit” or the left hand indicator column and the
Editor Panel is revealed (See Illustration 12). This allows the row to be edited free of the
constraints imposed by a simple column editor.

• After reopening the dataset (e.g. after a re-sort or change of filters) the previously selected
row is automatically reselected.

• The filters, such a “salary range”, also illustrate how the new IB SQL Parser works with the
TIBDynamicGrid. For example, where a salary range is selected, the dataset is re-opened
and the filters are applied in the BeforeOpen event handler.

• Each row can still be edited without having to open the panel editor. The column “located” is
an example of the use of TIBLookupComboEditBox as a column editor. Note that the
country list is dynamically generated and varies according to Job Code (an Employee
Database constraint).

12.1.1 Column Properties

Most of TIBDynamicGrid's new features are accessed via the column editor and are properties of
each column in the grid. The new column properties are given below.

113

Illustration 12: TIBDynamicGrid with an Editor Panel Visible

IBX for Lazarus User Guide

AutoSizeColumn Boolean If true then the column is automatically resized
to fill the grid. More than one column can have
this property set to true.

ColumnTotalsControl TControl Optional. Used to identity a control (typically a
TDBEdit or TDBText) to be kept in vertical
alignment with the column, and to have the
same width.

Note that the horizontal positioning is unaffected by
grid resize, and hence the total can be placed either
above or below the grid.

InitialSortColumn Boolean Identifies the column used to sort the grid when
the dataset is first opened.

DBLookupProperties TDBLookupProperties These properties are copied to a
TIBLookupComboBox when it is used as a
column editor. Setting
TDBLookupProperties.ListSource implictly
requests this as the column editor instead of a
normal pick list.

If the TDBLookupProperties.DataFieldName is
not set then the control works as a “pick list” with
its values taken from the List Source DataSet.

If the TDBLookupProperties.DataFieldName is
set then it works as full lookup list. The
DataFieldName identifies a field in the parent
TIBDynamicGrid.DataSource.DataSet. This field
does not have to be visible in the grid. When the
editor completes, the identified field is set to the
value of the List Source field identified by
TDBLookupProperties.KeyField.

12.1.2 TIBDynamicGrid New Properties

EditorPanel TControl When set, this control (typically a TPanel or
TFrame) is used as the Editor Panel (see
below).

ExpandEditorPanelBelowRow Boolean When set and an editor panel is displayed, the
row height is set to the current row height plus
the panel height and the Editor Panel placed
under the row. That is, the original row is still
displayed with the editor panel beneath it. The
default is that the editor panel appears to
replace the row.

114

 The IBX Controls

AllowColumnSort Boolean Enables column sorting by column header click
(default true).

Descending Boolean Determines the initial sort order. Default is false
i.e. ascending sort order.

DefaultPositionAtEnd Boolean Determines the initially selected row when the
dataset is first opened. If true then the last row is
selected, otherwise the first row. Default: false.

IndexFieldNames String This is a semi-colon separated list of one or
more dataset fieldnames. Typically this is the
primary key for the dataset. Used for automatic
reselection of rows after the dataset is reopened.

A property editor is available for design time field
name selection.

12.1.3 TIBDynamicGrid new Events

OnBeforeEditorHide This event is called before the Editor Panel is hidden. Can be used
to validate changes.

OnEditorPanelShow This event is called after the Editor Panel is made visible

OnEditorPanelHide This event is called after the Editor Panel is hidden. Can be used to
do any additional tidying up needed.

OnKeyDownHander The TIBDynamicGrid uses a KeyDown handler to intercept edit keys
while the Editor Panel is active. For example, to process an
“escape” key as a cancel edit. You can write your own keydown
handler to modify this behaviour.

OnColumnHeaderClick Called when a column header is clicked and before the dataset is
re-sorted. Can be used to modify the column index for the sort.

OnUpdateSortOrder Called when the dataset select SQL is being modified prior to
resorting the dataset. Can be used to modified the SQL “Order by”
clause. e.g. to add a subsort column. For example, useful when one
column has a “year” and the next column is the “month”. Clicking on
“year” can then made to subsort on “month”. Can also return an
empty string in order to prevent sorting of the dataset.

OnRestorePosition Called when the dataset is opened and may be used to override the
initially selected record. The event provides a read/write argument
(Location) that is an array of variants. This is either an empty zero

115

IBX for Lazarus User Guide

length array or contains the same number of elements as there are
indexnames (See IndexFieldNames property). In the latter case, it
contains the index key values for the previously selected row (i.e.
when the dataset was last closed). The first time the dataset is
opened the array is empty.

The location can be inspected and replaced by an alternative
location (index key values) or set to empty. In the former case, the
grid will attempt to locate the selected row. In the latter case, the
default position is selected (see DefaultPositionAtEnd property).

12.1.4 The Editor Panel

An Editor Panel may be any TControl available on the form. However, in practice, it is typically
either a TPanel or a TFrame. The example shows a TPanel being used as an Editor Panel.

You can create an Editor Panel by simply dropping it on to the same form as the TIBDynamicGrid
and then selecting it as the value of the TIBDynamicGrid.EditorPanel property.

To be useful, the Editor Panel should be populated with data aware controls that use the same
DataSource as the grid and are individually used to edit fields in the same row. The height of the
panel should be the minimum necessary as this will determine the row height when it is visible.

At run time, the Editor Panel is automatically hidden until called into use by either:

a) Pressing “F2” when the Dynamic Grid has the focus.

b) Clicking on the left hand indicator column, or

c) Calling the TIBDynamicGrid.ShowEditorPanel method.

In order to show the editor panel, the following actions are performed by the TIBDynamicGrid:

• The current row is resized to the height of the Editor Panel.

• The Editor Panel is resized and repositioned so that it fits exactly over the current row.

• The Editor Panel is made visible.

The current row can now be edited using the child controls on the Editor Panel – that is as long as
their DataSource is the same as the grid's.

The Editor Panel is hidden (and any changes Posted to the DataSet) when:

a) A different row is selected by the mouse or up/down arrow keys

b) The Escape Key is Pressed (cancels the changes)

c) “F2” is pressed.

d) The TIBDynamicGrid.HideEditorPanel method is called.

116

 The IBX Controls

Once the Editor Panel is hidden, the current row is re-sized back to its correct height.

12.2 TDBControlGrid

TDBControlGrid is a lookalike rather than a clone for the Delphi TDBCrtlGrid. TDBControlGrid is
a single column grid that replicates a TWinControl - typically a TPanel or a TFrame in each row.
Each row corresponds to a row of the linked DataSource. Any data aware control on the replicated
(e.g.) TPanel will then appear to have the appropriate value for the row.

Unlike the Delphi TDBCtrlGrid, there are no restrictions on which controls can be used on the
replicated panel. In principle, any visual control may be used. The “csReplicable” property is not
used by TDBControlGrid. However, there can be performance issues with a large number of
controls on the panel or when there is a high latency to draw one or more controls.

To use the new control, simply drop it on to a form at design time and size it appropriately. Then
separately drop a TPanel on to the same form and populate it with appropriate child controls,
typically data aware controls using the same DataSource.

Now link to TDBControlGrid DrawPanel property to this panel. The panel should then be
repositioned as a child control of the TDBControlGrid and occupying the top and only row of the
grid. The row height should be set to the panel height and the panel width will the set to the with of
the grid row. The panel can be unlinked at any time.

Now set the TDBControlGrid.DataSource to the common data source for the controls on the
panel.

117

Illustration 13: Example Control Grid

IBX for Lazarus User Guide

Important Note: It is strongly recommended not to open the source DataSet for a DBControlGrid during a
Form's "OnShow" event handler. Under GTK2 this is known to risk corrupt rendering of row images when the
control is first displayed. If necessary use "Application.QueueAsyncCall" to delay opening of the dataset (see
DBControlGrid examples) until the Form''s Window has been created. See the example application.

When you build and run your project and open the DataSource's dataset, the TDBControlGrid
should show a row for each row in the dataset and the child controls on each row should have the
appropriate values for the row.

When the grid has the focus, you can move between rows using the up and down arrow keys,
page Up and Page Down, Ctrl+Home and Ctrl+End jump to beginning and end respectively. You
can also use the mouse to change between rows, either by clicking on a row or the scroll bar.

Pressing the down arrow key on the last row should append a new row – as long as the “Disable
Insert” TDBControlGrid.Option is not selected.

All rows may be edited in situ. Moving between rows should automatically post the changes. The
“escape” key may be used to cancel row edits before they are posted.

A row may be deleted by calling the underlying DataSet's Delete method.

See the TDBControlGrid example code for guidance on how to use the control. This example
requires IBX and uses the Firebird example employee database.

12.2.1 TDBControlGrid Properties

DrawPanel TWinControl This control will be replicated for each row in the
DataSet. Typically a TPanel or a TFrame.

Options TPanelGridOptions Similar to a TDBGrid, but limited to:

• Cancel On Exit

• Disable Insert

• Show Indicator Column

DataSource TDataSource A row is replicated for every row in this dataset.

DefaultPositionAtEnd Boolean When the dataset is opened then it is initially
positioned at the last record if this property is true,

12.2.2 TDBControlGrid Events

OnKeyDownHander The TDBControlGrid uses a KeyDown handler to intercept edit keys
while the Draw Panel is active. For example, to process an “escape”
key as a cancel edit. You can write your own keydown handler to
modify this behaviour.

118

 The IBX Controls

12.3 TIBTreeView

TIBTreeView is a data aware descendent of a TCustomTreeView and is used to present a
hierarchically organised data set in a tree view. Tree Node Insertion, Deletion and Modification are
supported, as is moving (e.g. using drag and drop) nodes from one part of the tree to another. The
underlying dataset cursor is always positioned to reflect the currently selected tree node. It can
thus be used to select a row for detailed editing. SQL Manipulation is used to load the tree as a
series of separate queries.

Illustration 14 Is taken from ibx/examples/ibtreeview and uses the Firebird example “employee”
database. This database contains a hierarchically organised table “DEPARTMENT” and which is
used for the example.

To use a TIBTreeView, simply drop it on to a form, set the DataSource property, and, as a
minimum, the TextField, ParentField and KeyField properties as defined below.

The DataSet must have a single primary key field.

12.3.1 TIBTreeView Properties

DataSource TDataSource Identifies the source of the data to present using
the tree view

TextField string The field name of the column used to source each

119

Illustration 14: TIBTreeView Example

IBX for Lazarus User Guide

node's display text

KeyField string The field name of the column used to source each
node's primary key.

ParentField string The field name of the column used to identify the
primary key of the parent row. This field is null for
a root element.

HasChildField string Optional. The field name of the column used to
indicate whether or not the row has child nodes.
When present, the field should return an integer
value with non-zero values implying that child
nodes exist.

RelationName string Optional. The Child Field is typically the result of
joining the table to itself and is a count of child
rows. However, this can result in ambiguous
column names when the SQL is manipulated. This
property should contain the Table Alias used to
select the Key, Text and Parent Fields (see
example application).

12.3.2 TIBTreeView Methods

function GetNodePath(Node: TTreeNode): TVariantArray

Returns a Variant array containing the primary key values of the Node and its parents from the root
node downwards.

function FindNode(KeyValuePath: TVariantArray; SelectNode: boolean): TIBTreeNode;

Returns the TTreeNode identified by the KeyValuePath. The KeyValuePath is an array comprising a
list of primary key values walking the tree down from the root node to the requested node.

If SelectNode is true then the returned node is also selected.

This function can be used to select the tree node using the node path returned by an earlier call to
the function GetNodePath.

function FindNode(KeyValue: variant): TIBTreeNode;

Returns the tree node with the primary key given by KeyValue. Note: this forces the whole tree to
be loaded by a call to TCustomTreeView.FullExpand.

12.3.3 Drag and Drop

Drag and drop is supported by TCustomTreeView without the need for additional support from
TIBTreeView. In the example, drag and drop is enabled by:

• DragMode set to automatic

120

 The IBX Controls

• The OnDragOver Event handled by:

procedure TForm1.IBTreeView1DragOver(Sender, Source: TObject; X, Y: Integer;
 State: TDragState; var Accept: Boolean);
begin
 Accept := Source = Sender
end;

• The OnDragDrop Event Handled by:

procedure TForm1.IBTreeView1DragDrop(Sender, Source: TObject; X, Y: Integer);
var Node: TTreeNode;
 tv: TTreeView;
begin
 if Source = Sender then {Dragging within Tree View}
 begin
 tv := TTreeView(Sender);;
 Node := tv.GetNodeAt(X,Y); {Drop Point}
 if assigned(tv.Selected) and (tv.Selected <> Node) then
 begin
 if Node = nil then
 tv.Selected.MoveTo(nil,naAdd) {Move to Top Level}
 else
 begin
 if ssCtrl in GetKeyShiftState then
 begin
 Node.Expand(false);
 tv.Selected.MoveTo(Node,naAddChildFirst)
 end
 else
 tv.Selected.MoveTo(Node,naInsertBehind)
 end;
 end;
 end;
end;

Note that the above applies the convention that if the “control” key is held down while the node is “dropped”
then it is added as a child node. Otherwise, it is added as a sibling.

121

IBX for Lazarus User Guide

12.4 TIBLookupComboEditBox

TIBLookupComboEditBox is a TDBLookupComboBox descendent that implements "autocomplete" of
typed in text and "autoinsert" of new entries.

• Autocomplete uses SQL manipulation to revise the available list and restrict it to items that
are prefixed by the typed text (either case sensitive or case insensitive).

• Autoinsert allows a newly typed entry to be added to the list dataset and included in the
available list items.

Although TDBLookupComboBox also supports auto-complete, the benefit of using
TIBLookupComboEditBox comes with long lookup lists as typing in one or more characters forces
the list to be queried again and restricted to list members beginning with the same characters. The
list of alternatives becomes much shorter.

Auto-insert normally uses the list dataset's insert query to add a new row and depends upon the
dataset's “After Insert” event handler to set the other fields of the row to appropriate values and/or
the generator assigned to the dataset.

12.4.1 TIBLookupComboEditBox Example

The above example can be found in ibx/examples/lookupcombobox and uses the Firebird
“employee” example database. The “Employee Name” is a TIBLookupComboEditBox and is used
here to:

a) Select an employee record for editing

b) Initiate the entry of a new employee record.

122

Illustration 15: Using the TIBLookupComboEditBox

 The IBX Controls

First, you should explore the use of the new control. Click on the drop down arrow and a drop
down list of all employee names (in lastname/firstname syntax) will be shown. This is typically
longer than can be displayed on a single screen.

Now close the drop down list, select all characters in the Employee Name edit box and enter “pa”.
After a short (600ms) delay, after you stop typing, the employee details should change to that
shown in Illustration 16 i.e. for the first employee with a lastname beginning with “pa”, i.e. Mary
Page.

Of course, auto-complete to the first employee beginning “pa” may not get the actual employee you
want. Now click on the drop down list and this will show all employees with a last name starting
with “pa”. This is a much shorter list than the full list and allows you to quickly focus in on the
employee you want.

Indeed, this can also be done from the keyboard. Start again, and enter “pa”, now press the down
arrow and you can cycle quickly through all employees starting “pa”. The up arrow also works. Use
the Enter key to select the employee record.

Alternatively, after entering “pa” and seeing the entry for Mary Page, then press “r” to extend the
entry to “par” and you get the record for Bill Parker.

To return to the full list, just press the escape key while the control has the focus.

12.4.1.1 Auto-insert

Auto-insert allows quick insertion of new employee records. For example, start by selecting all text
in the Employee Name edit box and enter the name of the new employee (e.g. Smith, John), and
press the “Enter” key. You should now get a prompt confirming the entry of the new employee
record:

123

Illustration 16: Selection of a Different Employee

IBX for Lazarus User Guide

If you click on “yes” then a new employee record is created and displayed as show below.

The employee name is parsed from the text entered into the Employee Name box. The remaining
fields come from defaults taken from the “OnInsert” event handler. You can now amend the
defaults as required.

12.4.2 TIBLookupComboEditBox Properties

TIBLookupComboEditBox inherits TDBLookupComboBox properties. In addition, it defines:

AutoInsert Boolean Set to true to enable auto-insert

AutoComplete Boolean Default: true in TIBLookupComboEditBox

KeyPressInterval Integer Delay in milliseconds between last key press and
auto-complete (Default: 500ms).

RelationName String TIBLookupComboEditBox updates the “Where”
clause in the ListSource select SQL query in order
to refine the list, and uses the value of the

124

Illustration 17: New Employee Record

 The IBX Controls

“ListField” property as the column name. If this
name is ambiguous in the SQL query then the
“RelationName” property must be set to the name
of the table or table alias to qualify the column
name and remove the ambiguity.

12.4.3 TIBLookupComboEditBox Event Handlers

OnAutoInsert TIBLookupComboEditBox will normally use the ListSource's
Insert query to perform auto-insert. If this is not possible or
inappropriate then an OnAutoInsert handler must be provided to
perform the insertion. The handler is provided with the value of
the display text to insert and must return the new key value.

OnCanAutoInsert This handler is called immediately before auto-insertion is
performed and is typically used to validate the insert and obtain
user agreement (e.g. via a dialog box). The handler is provided
with the value of the display text to insert and must set the
“Accept” boolean on return to true to accept the insert or to false
to reject it.

12.5 TIBArrayGrid

TIBArrayGrid is a visual control that can be linked to a TIBArrayField and used to display/edit the
contents of a one or two dimensional Firebird array. It may be found in the “Firebird Data Controls”
palette.

To use a TIBArrayGrid, simply drop it onto a form and set the DataSource property to the source
dataset and the DataField property to the name of an array field. The grid should then be
automatically sized to match the dimensions of the array.

Note that the array bounds can be refreshed at any time in the IDE, by right clicking on the control and
selecting "Update Layout" from the pop up menu.

At runtime, the TIBArrayGrid will always display/edit the value of the array element in the current
row. If this element is null then the array is empty. However, data can be inserted into an empty
array. When the row is posted, the field will be set to the new/updated array.

12.5.1 Properties

Most TIBArrayGrid properties are the same as for TStringGrid. The following are specific to
TIBArrayGrid. Note that you cannot set the Row or column counts directly as these are always set
to match the array field.

Public Properties

ArrayIntf Provides direct access to the array itself.

125

IBX for Lazarus User Guide

DataSet The DataSet provided by the DataSource (read only).

Field The source field

Published:

DataField The name of the array column.

DataSource The data source providing the source table.

ReadOnly Set to true to prevent editing

ColumnLabels A string list that provides the labels for each column in the grid.
Provide one line per column. If non empty then a column label
row is created as a fixed row at the top of the grid.

ColumnLabelAlignment Sets the text alignment for column Labels

ColumnLabelFont Sets the font used for column labels

RowLabels A string list that provides the labels for each row in the grid.
Provide one line per row. If non empty then a row label column
is created as a fixed column to the left of the grid.

RowLabelAlignment Sets the text alignment for row Labels

RowLabelFont Sets the font used for row labels

RowLabelColumnWidth Width of the Fixed Column used for row labels.

TextAlignment Alignment of all cells other that those containing labels.

12.5.2 Examples

Example applications are provided for both one and two dimensional arrays. In each case, the
example applications create their own database and populate it with test data when first run. Note
that you will typically need to run the application before accessing database properties in the IDE.
This is in order to create the database referenced by the IDE.

12.5.2.1 Database Creation

The TIBDatabase property “CreateIfNotExists” is set to true in both examples. This means that if
the database does not exist when an attempt is made to connect to it then the database is created.

126

 The IBX Controls

After it is created, the “OnCreateDatabase” event handler is used to add a table to the newly
created database and to populate it with test data. The application then continues as if the
database already existed.

By default, the database is created in the defined temporary directory. This behaviour can be
overridden by editing the example's “unit1” unit to remove the “{$DEFINE LOCALDATABASE}”
directive and setting the const “sDatabaseName” to the required path e.g.

const
 sDatabaseName = 'myserver:/databases/test.fdb';

12.5.2.2 1D Array Example

A screenshot from this example program is illustrated below.

In this case, the test data table is defined as

Create Table TestData (
 RowID Integer not null,
 Title VarChar(32) Character Set UTF8,
 MyArray Double Precision [1:12],
 Primary Key(RowID)
);

Each row includes a floating point array with twelve elements. In the example application, the table
is displayed and edited using a DBControlGrid. The title field is interpreted as a “Department” and
displayed using a TDBEdit control. The array field is interpreted as sales by month and displayed
as a one dimensional TIBArrayGrid with column labels. The example allows both the Department
Name and monthly sales values to be updated and changes saved. New rows can be inserted and
existing rows deleted.

Note: there is an LCL bug (http://bugs.freepascal.org/view.php?id=30892) which will cause the 1D array
example to render incorrectly under Windows. That is only the focused row will show the array. The bug
report includes an LCL patch to fix this problem. It is believed to be fixed in Lazarus 1.8.0.

127

http://bugs.freepascal.org/view.php?id=30892

IBX for Lazarus User Guide

12.5.3 2D Array Example

A screenshot from this example program is illustrated below.

In this case, the test data table is defined as

Create Table TestData (
 RowID Integer not null,
 Title VarChar(32) Character Set UTF8,
 MyArray VarChar(16) [0:16, -1:7] Character Set UTF8,
 Primary Key(RowID)
);

Each row includes a two dimensional string array with indices 0..16 and -1 to 7. The grid interprets
the first index as a column index and the second as a row index (i.e. x,y Cartesian co-ordinates).

The example program displays a row at a time with a navigation bar providing the means to scroll
through the dataset, as well as saving or cancelling changes, inserting and deleting rows.

This example illustrates the use of both column and row labels.

128

	1 Introduction
	1.1 References
	1.2 Change History
	1.2.1 Version 1.1
	1.2.2 Version 1.2
	1.2.3 Version 1.3
	1.2.4 Version 1.4
	1.2.5 Version 1.5

	2 Installation and Preparation for Use
	2.1 Minimum Requirements
	2.2 Installation under Lazarus
	2.3 Console Mode IBX
	2.4 Installing Firebird
	2.5 Upgrading from Earlier Versions
	2.6 New Features with IBX2
	2.7 Uninstalling IBX

	3 An Introduction to Databases, SQL and Firebird
	3.1 What is a Database?
	3.1.1 In the Beginning
	3.1.2 The Arrival of Random Access Storage
	3.1.3 Indexes
	3.1.4 Multiple Indexes and Datasets
	3.1.5 The Need for Middleware
	3.1.6 Enter the RDBMS
	3.1.7 Multi-user Access

	3.2 The Structured Query Language (SQL)
	3.3 The Firebird RDBMS
	3.4 And then there was IBX

	4 IBX Overview
	4.1 Conversion From Delphi IBX
	4.2 IBX in Context
	4.3 Component Overview
	4.4 Databases and Transactions
	4.5 Datasets
	4.5.1 Datasets and Transactions
	4.5.2 Single Table Datasets
	4.5.3 SQL Defined Datasets

	4.6 Examples

	5 The Database Access Components
	5.1 TIBDatabase
	5.1.1.1 Parameter Keywords
	5.1.2 Highlighted Events
	5.1.3 Connecting to a Database
	5.1.4 Database Disconnect
	5.1.5 Creating a new Database
	5.1.6 Dropping a Database
	5.1.7 Using the Attachment Interface
	5.1.8 Using the AllowStreamConnected Property

	5.2 TIBTransaction
	5.2.1 Highlighted Properties
	5.2.2 Events
	5.2.3 Transactions and Databases
	5.2.4 Starting a Transaction
	5.2.5 Transaction Parameters
	5.2.6 The Transaction Editor
	5.2.7 Closing a Transaction
	5.2.8 Retaining Transaction State after Closure

	5.3 TIBEvent
	5.3.1 Highlighted Properties
	5.3.2 Events
	5.3.3 Using Events

	5.4 TIBSQL
	5.4.1 Highlighted Published Properties
	5.4.2 Using TIBSQL
	5.4.2.1 Executing a Stored Procedure
	5.4.2.2 A Stored Procedure that returns Output
	5.4.2.3 Executing a Select Statement

	5.4.3 The TIBSQL SQL Property Editor

	6 The DataSet Components
	6.1 IBX Datasets
	6.2 Common Concepts
	6.2.1 Common Properties
	6.2.2 Common Events
	6.2.3 Exception Handling
	6.2.4 Character Sets and Code Pages

	6.3 TIBTable
	6.3.1 Highlighted Properties
	6.3.2 Using TIBTable
	6.3.2.1 Master/Detail Tables

	6.4 TIBStoredProc
	6.4.1 Highlighted Properties
	6.4.2 Using TIBStoredProc

	6.5 TIBQuery
	6.5.1 Highlighted Properties
	6.5.2 Using TIBQuery
	6.5.3 The Select SQL Property Editor
	6.5.4 Parameterised Queries

	6.6 Update Objects
	6.6.1 TIBUpdateSQL
	6.6.1.1 Highlighted Properties
	6.6.1.2 SQL Syntax for Update Object Queries
	6.6.1.3 OLD and NEW Parameters
	6.6.1.4 Insert and Update Returning Clauses
	6.6.1.5 Delete Returning Clauses
	6.6.1.6 Using Stored Procedures for Insert, Update or Delete

	6.6.2 TIBUpdate
	6.6.2.1 Highlighted Properties

	6.6.3 Generators
	6.6.4 Updating Datasets
	6.6.5 Automatic Posting
	6.6.6 The OnValidatePost Event
	6.6.7 Cached Updates
	6.6.7.1 Cached Updates using OnUpdateRecord
	6.6.7.2 The OnUpdateError Event

	6.6.8 Identity Columns
	6.6.9 Row Refresh

	6.7 TIBDataSet
	6.7.1 Highlighted Properties

	6.8 Dataset Fields
	6.8.1 FieldDefs
	6.8.2 IBX Fields
	6.8.2.1 TIBBCDField, TIBSmallintField, TIBIntegerField and TIBLargeIntField
	6.8.2.2 TIBStringField
	6.8.2.3 TIBMemoField
	6.8.2.4 TIBArrayField

	7 IBX Support Components
	7.1 The IBX Script Engine
	7.1.1 Properties:
	7.1.2 Events:
	7.1.3 Usage
	7.1.4 Examples
	7.1.4.1 The Script Engine Example

	7.1.5 The fbsql Console Mode Application

	7.2 The Data Output Formatters
	7.2.1 Usage
	7.2.2 Properties

	7.3 The SQL Parser
	7.3.1 The Parser
	7.3.2 Use with IBControls
	7.3.3 Example
	7.3.4 TSelectSQLParser Reference

	7.4 ISQL Monitor
	7.4.1 TIBISQLMonitor
	7.4.1.1 Selecting what to monitor
	7.4.1.2 SQL Reports
	7.4.1.3 Application Monitoring

	7.4.2 Examples
	7.4.2.1 Integrated Monitoring
	7.4.2.2 Remote Monitoring

	7.5 TIBDatabaseInfo
	7.5.1 Per Table Counts

	7.6 TIBExtract
	7.6.1 Extract of Binary Blobs
	7.6.2 Extract of Array Data

	8 Using Firebird Blobs
	8.1 Blob Types
	8.1.1 Text Mode Blobs
	8.1.2 Binary Blobs

	8.2 Stream Mode access to Blobs

	9 Using Firebird Arrays
	9.1 Defining an Array Element
	9.2 TIBArrayField

	10 Using Firebird Services
	10.1 Firebird Admin Component Overview
	10.2 Common Service Properties
	10.3 The Backup Service
	10.3.1 Server Side Backup
	10.3.2 Client Side Backup

	10.4 The Restore Service
	10.4.1 Server Side Restores
	10.4.2 Client Side Restores

	10.5 The Configuration Services
	10.6 The Server Properties Service
	10.7 The Log Service
	10.8 The Database Statistics Services
	10.9 The Security Service
	10.9.1 Listing all User Names
	10.9.2 Adding a User
	10.9.3 Updating User Details
	10.9.4 Deleting a User

	10.10 The Validation Service
	10.10.1 Database Repair
	10.10.2 Resolving Limbo Transactions

	11 Personal Databases
	11.1 TIBLocalDBSupport
	11.1.1 Properties
	11.1.2 Events:
	11.1.3 Shared Data Directory
	11.1.4 DatabaseName, and login parameters management
	11.1.5 Database Initialisation
	11.1.6 Saving the Current Database
	11.1.7 Restoring the Database from an Archive
	11.1.8 Database Schema Upgrade

	11.2 Local EmployeeDB Example
	11.2.1 Running the application
	11.2.2 Console Mode

	12 The IBX Controls
	12.1 TIBDynamicGrid
	12.1.1 Column Properties
	12.1.2 TIBDynamicGrid New Properties
	12.1.3 TIBDynamicGrid new Events
	12.1.4 The Editor Panel

	12.2 TDBControlGrid
	12.2.1 TDBControlGrid Properties
	12.2.2 TDBControlGrid Events

	12.3 TIBTreeView
	12.3.1 TIBTreeView Properties
	12.3.2 TIBTreeView Methods
	12.3.3 Drag and Drop

	12.4 TIBLookupComboEditBox
	12.4.1 TIBLookupComboEditBox Example
	12.4.1.1 Auto-insert

	12.4.2 TIBLookupComboEditBox Properties
	12.4.3 TIBLookupComboEditBox Event Handlers

	12.5 TIBArrayGrid
	12.5.1 Properties
	12.5.2 Examples
	12.5.2.1 Database Creation
	12.5.2.2 1D Array Example

	12.5.3 2D Array Example

