MWA

Firebird
Pascal API
Guide

Issue 1.11,
9 February 2022

McCallum Whyman Associates Ltd

EMail: info@ mccallumwhyman.com, http://www.mccallumwhyman.com

Registered in England Registration No. 2624328

COPYRIGHT

The copyright in this work is vested in McCallum Whyman
Associates Ltd. The contents of the document may be freely
distributed and copied provided the source is correctly
identified as this document.

© Copyright McCallum Whyman Associates Ltd (2016 - 2022)
trading as MWA Software.

Disclaimer

Although our best efforts have been made to ensure that the
information contained within is up-to-date and accurate, no
warranty whatsover is offered as to its correctness and readers
are responsible for ensuring through testing or any other
appropriate procedures that the information provided is correct
and appropriate for the purpose for which it is used.

CONTENTS
1 INTRODUCTION

1.1 REFERENGES...ettttteteteeeeeeeeeieeeesesesesnnnssssssssssssssssssssssesesessessesesessssssssssssssssssssssssssssesesssssens
1.2 CHANGE HISTORYuuttiieiieeiiiiieeeeccittee e e eecttee e s eeeitte e e e e eavtaeeeesnsbaseeesensassesseesssneessnnnns
O A -3 47 Lo « I R PRSP
1.2.2 VBISION 1.2......ueueeeeeeeeeeeeeee et eeecttee e e e e ctaee e e e e eaaae e e sesasaeeeseennaaaeeeennraneaennn
1.2.3 VBISION 1.3...eeeeeeeeeeeeeeee ettt eeecttee e e e e cttaee e e e e evaae e e seeaaaaeeeeensnaaaeeeennsaeeaennnn
I V) 4] (o) B ST
IS T V3 4] (o) B 0 YU
B S =) 47 o) ¢ I A ¢ YU
B A =) 41 L) ¢ I PPN
1.2.8 VOISION 1.8ttt et e e e cttae e e e s vaee e e s e aaaee s s e enstase e s e nnraaeaaannn
O I =) 47 L) ¢ I S PPN
1.2.10 VerSion 1.10.....uuueeieeeceeeeeeeeiieeeeeeecieeeeeeeeieeeeeeeeeiraeeeeseseasaeeeseessnsaseseennsaseaennes
1.2.11 VerSiON 1.1 1....uuueeeieeeeeeeee et eeecttee e e eeevaee e e e e taee e e sesasaaeeeeennaaaessennraaaeanen

2 INSTALLATION AND PREPARATION FOR USE

.. 2
.. 2
.. 3
.. 3
.. 3
.. 3
.. 4
.. 4
.. 6

2.1 INSTALLATION UNDER LLAZARUS....eceiieeiurieeeeeeitrreeeeeeiirreeeeeenitnreeeeeeesreeeeeeesnnnseeeeessnnseseens
2.2 INSTALLATION UNDER FPC....cciiiiiiiiiiiiiiiicc ettt eetrre s srne e e s s sennee e s e
2.3 INSTALLATION UNDER DELPHI....uutttiieieuireeeensiineeeesssiuereesssssnseeesesssnseseesssssssssessssssnneesans
2.4 INSTALLING FIREBIRD.....ccccutiiieieiiiiiieeeeeiitteeseeeitteeeseeasveeeeeesssaseeeesensesseessnssssseessnnssssnes
2.5 WHICH FIREBIRD API?.....ooiiiiiieee ettt ettt eevtre e s e etaeee s e s esaaae e s e nnannes

3 PROGRAMMING WITH THE FIREBIRD PASCAL API

3.1 USING THE API IN YOUR PROJECT....coitteieiiittrtiitiiteeeeeeeeeeeeeeeeeeeeeteeeeeeeessssssssssesesseneseees
3.2 ACCESSING THE AP ...ttt ettt ee e e e e e are e e e eenraeee e e s nssaaeeeenn
3.3 LoCATING THE FIREBIRD CLIENT LIBRARYcccittiiiirienerererrerrrereeeeeeeeeeeeeeeeeeessssnnsennssnsnnes
3.3.1 URNAEE LINUX...uvveeeeeeeeeneeeeeeeeeeeeeeeeeeeeeeeeeesseeeesseeeesaesssnseesssseesssssesssseessssesssnsens
3.3.2 UNAET WINAOWS......ccuvveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeesseesseeessssessenseessnssesseseeean
3.3.3 Under DAarwin (OSX)......ccceeeeeecuerseesierireesieessseessesssesssesssessssssssesssssssesssessses
3.3.4 Overriding the Default Library NAmMe............c.ccccceeeeeeervereseseseneesieneeseeneeneene
3.3.4.1 The FBLIB Environment Variable..............cccooiiiiiiiiiieiiieeeceee e
3.3.4.2 The OnGetLibraryName Event Handler..........cc.coccoveevererinicnieninieneneeceecceeene

3.4 API VERSION INUMBER......cccouvtreeeeeirereeeeeeirreeeeeesnreeseeesissseeseesssssessessessssssesesessssssessennns
3.5 REFERENCE...ueeiieeitreeeeeeeereeeeeeeeesreeeeeesinseseseesesssaseessesssssseeseessssssesessessssssessessssseeseesasnes
3.6 THE FIREBIRD LIBRARY INTERFAGE.....ccceeeererurrrrrrrrererereeerereeeeeeseesesessenensssssssssesssssssssesens
3.7 ACCESSING THE FIREBIRD PROVIDER INTERFACE.......uvvvurrerererereeeeeeeeeeeeeeeseeesessesennnnsssssesenens
3.8 IMULTI-THREADING...ttttvterieieeeeeeeeeeeieeeeeseessssssssssesessesserereseeeeseesesesessssssssssssssssssssssssssesens

4 WORKING WITH DATABASES

.. 12

4.1 Tue DATABASE PARAMETER BLOCK (DPB)...ccviiiiiiiiieiecceecie ettt

1.1 REEIOINCE.......eoueeeeeiieieeeieieeeeeeeie sttt sttt ettt ettt et ese s ssesbesbessessanean
4.2 CREATING A INEW DATABASE....uttieciiriiiieeeiieeeiteeectteeesteessaeeesseeessaseesenseesssseesssssessnnees
4.3 ATTACHING TO AN EXISTING DATABASE.....uvvviieieeiirieeeeeiirieeeeeeetreeeeeeeenneeeeeeennnreseeeesennes
4.4 CONTROLLING ACCESS TO THE DPB PASSWORD........uttiiiiieiiiieeeiciiieeeeeecieeeeeeeivnee e e
4.5 DISCONNECTING...uvteeeeeseuvrreeesessusreessesssnssesesssssssssessssssssseessesssssssssssssssssesssssssssessssssssseees
4.6 RECONNECTING....utteeeeeeesreeeeeesasareeeesasssseeessesssssssssssssssesssessssssssssssssssssssssssssssesssssssssessan
4.7 DROPPING A DATABASE.....uuvtiieieeiiiieeeeeeeiiteeeeeeettteeeeeessteeeeessssassesssssssssessessssssessssnssees
4.8 GETTING DATABASE INFORMATION. ..cecieeiuvrieeeeeiireeeeeeeireeeeeeeernreeeeeessseeeesesssseseesesnseseens

4.8.1 USing the IDIRB INLET UCE...........ccoecureriiririieeeierieniesiesiesieniessesteteneeeeeeaessessens

4.8.2 The IDBINformation INErfacCe............c.ccueereueseesuenreeneeeenieseesieseessesssessesssenses
4.9 GETTING INFORMATION ABOUT THE ATTACHMENT....eeeeeeeerrreeeeessnrereeeesessseeeeeennsseeeenssnnens
4.10 DATABASE ACTIVITY IMONITOR...ccceeeeurrreeeeeeirreeseesisreeseesssnseeesessssssaseessssssseessssssssaesens
4,11 ATTACHING TO A DATABASE USING THE EMBEDDED SERVER......00teiiieeirieeeieniieneeeeensnneeneas
4,12 REFERENGE....uutteeeeeieuteeeeeesassureesessssssseessssssssesesssssssssesssssssssssssssssssssssssssssssssesssssssssssnnns
4.13 THE ITIMEZONESERVICES INTERFACE....cccceittrreeeeeirirreeseesirreeeeessnrneeeessenseseesssssssseeesennnns

5 WORKING WITH TRANSACTIONS

5.1 THe TRANSACTION PARAMETER BLOCK (TPB)....uiicuiieiiiiiecieceecieceeeteeee e
5.2 STARTING A TRANSACTION.....uuvereeeeeirereeeeeeirreeeeeesnreeeeeesissseeeeessssseseessssssssseeesesssssessennns
5.3 STARTING A TRANSACTION ON MULTIPLE DATABASES.....ccceitvreeeeeeirreeeeeeninrreeeeeeenreneeeesnnns

5.4 TRANSACTION INAMES......ceieieeeeeererirrrrerererereeererereeeeeeeeesesessesesssssssssssssssssssssesesessessesesessssessssssssssssssssssssssnnnsessssssnnneens 44
5.5 COMMITTING A TRANSACTION....cceeeeeeerererurrrrrerereeressereseeeeseseesessssesessssssssssssssssssssssssssssssessesessesessssssssssssssssssssssssseseeesses 44
5.6 TWO PHASE COMMIT.....cciiiiiiiiiieiiiitriirtrtrtrereeeeeeeteteeeeetetetesaesesssssssssssssssssseresesesseeeesesemsssesssssssssssssssssssssnnnnsssssssnnnneens 44
5.7 TRANSACTION ROLLBACK . uuutttttttrrrerieieeeeeeeeeieeeeessesessssssssssssssssesseseseeeeseseesesesmesesssssssssssssssssssssesessssesessesessnsesesssssssssens 44
5.8 RESTARTING A TRANSACTION.....cuuvveeeieeiiureeeeeesereeeeeesesssreeeeeesssseeseesassssseessssssssesesssssssssesssssssseessesssssssssssssssssssssssssrnns 44
5.9 FORCIBLY COMPLETING A TRANSACTION...uuvuverreereeereeeeeeeeeieteeessssssssssssssssssssssssesesessseeseesesessssssssssssssssssssssssesesessssnnnneeees 45
5.10 TRANSACTION ACTIVITY IMIONITOR....eeeeeieeiurreeeeeesinreeeeeesesseeeeesesssseeseesssssessesssssessessssssesseessessssssessessssssessssssssessesennns 45
5.11 TRANSACTION INFORMATION......uuuuuuuuururererererereeeeeeeeeeeeseesasessesessssssssssssssssssssssssssssssessssesssesasssssssssssssssssssasassesessseeeses 45
5,12 REFERENCE...cititiiitieieieeeeierersurssssrerereresssereseeeeeeesesesessssesssssssssssssssssssssesesessessssesesessesssssssssssssssssssssesesesesseeserssssnnnneens 46
6 WORKING WITH DYNAMIC SQIL 49
6.1 DyNaMIC SQL AND THE FIREBIRD PASCAL APL....uueeeeiiiiiiiiieieeeeeeeec ettt e e e e e e eeeeeeeesee s s s ssssssaneesseenes 49

6.1.1 INAMEA PATAMELETS......eeeeeeeeereeeeeeeeieeeeeeieeiteeeeeessssteeeessesseseeseesssssseseessssesesssssssesssessessssssessssssssseesonssanseeseees 49

6.1.2 COIUMN INAMES.......cccuveereeereeereeeteeeiteesteeiteesteesteesstessseessaesseasssesseessseassassseaseasssesssesssessessssesssesssassssessnnne 50
6.2 SQL STATEMENT WITH NO INPUT OR OUTPUT.....uuuvvreeeeeesiureeseeesasseseessessssesssssssssssessesssssssssessssssssssssssssessensssesessnnsssens 52
6.3 IVIETADATA. .. uuuururerererereeeeereeeeeeeeeeasessesesessssssssssssssssssssssseeeesessassssssesssssssssssssssssssssssssesessessssessesesasasssssssssssssssnnnnesssnnne 53

6.3.1 Input Parameter MEtAAALA...............ccueeueeeuervreuerieesieeeesestessestessessessessessesssesssessesssessesssessesssessesssessasssees 53

6.3.2 OULPUL MELAAALA.ccveeveeveereereeieeireeeesteetessessessesssesseesesseessasseessesssessesssessesssessesssessesssessesssesssseessseessssenns 56
6.4 SQL STATEMENTS WITH INPUT PARAMETERS ONLY.eeeeeeeeeeeeeeeessesennsssssssssssssssssssssesseseesssessssesessssssssssssssssssssssssssssnsesssssss 58

6.4.1 The IAttachment. EXeCuteSQL MENO................coouevuueeiiiieiiieieeieeiieeeeeeeeeiieeeeeessisareeeesssaseeessessasssesesssssnaseees 58
6.5 SQL STATEMENTS WITH OUTPUT.cceceiiiiiiiiieieieeieieiinesrerereeeereseeseseeeeeeseesesessssesssssssssssssssssssssesesesseseesessesseesssssssnseesessees 59

6.5.1 The ISQLDALA INETTACE.ccueeueeieeieiieienieeteeieestesteste st este et e be st e beetesaeestesaeeneesatesesasessessessesnsensassnseenn 59
6.6 DATE AND TIME COLUMN TYPES...uuuuuuuttiiiiiiieieieiiiiieeeieieieeeesssssssssssassssrseereeesesesseseesesessssssssssssssssssssssssssssesesseseeeesssssnns 61
6.7 THE INUMERIC DATA TYPE...uuuttitiiiiiiiieieieeeeeieeeieeeieeeesesesennsssessrsesesssseseeeseessesessssssessssssssssssssssssssssssseesesesssssssnanessssees 62
6.8 (QUERY STATEMENTS. .veeeeeeeeitrreeeeeeisrereeeesiseeeeeesessssesessessssssessessssssssesssssssssessssssssesssssssssssessessssssssesssssssssesesensssesseessss 64

Lo T A Yal o) [s 1] (= @ T Yo SRR 64

6.8.2 USAGE INOLES....ccuueeeeeeeeeeieeeeieteeette e ette e ettt e st e s tt e e e bt e esstee s sbteesabeeseastee s saeessnbeesessteesasaeesasttaeeeesssasnnnnnsnnes 65
6.9 SIMPLIFIED (QUERIES...uuvuvevvrrererrereeeeeeeeeeeeeeessssessssssssssssssessssssesesseseseesesessesesesssssssssssssssssssesessesesseseesesesesesssssssssssssssssnnn 65
.10 BATCH UPDATE/INSERT....cieiiiiiiiiiiieeieeeeeiiittreretereeeeeeereeeeeeeeeteteseesesssssssssssssssssssssssesesseseseesessesesssesssssssssssssssnnnnessssses 66

6.10.1 EXAINPIE......coueeeeeeteeieieeeeeteetesit et stt et st et e st e s e e st e s e st e b e s st e b e e st e st e st esaeeatesaeentesaeensesatensesaeensesasensesnaansaesas 67

6.10.2 The BALCH ROW LIMIL.....uuueeiiieeiueeiieiieiieieeeeeeiieeeeeeeeieeeeeeeestaseeeesessasteessssssssesssssssssseessssssssesssssssseessssssssss 68

6.10.3 The Batch ComPpletion INEETfACE............c..ceeereueeiereierieeseeeesteeeessesssessessessessessesssessesssesseessessnsesssssesssesns 68

6.10.4 INfOrMALION SCTVICES.......cccueeeeeieeeeesieeeeseeetessestessesssesseestesseesesssensesssessesssessesssessesssessesssessesssessnsesssseessseens 69
6.11 PERFORMANGCE OPTIMISATION......cceeeeseserunrrrerererersssssreseseeeeseseessssssesessssssssssssssssssssssssssesessesessesesesessssssssssssssssnnnesssssns 70
.12 PERFORMANGE STATISTICS....ccceteteeeererrrrrrsrsressesssssseseseeeeeeseesessesasessssssssssssssssssssssssssssessssessssesessssssssssnnnsessssssnnnesessens 70
6.13 STALE REFERENCE CHECKS. uuuuuuuuuuuurururereerereerereeeeeeeeeteeessssesssssssssssssssssssssesessssessesessssssssssssssssssssssssssssssesesseseseessssssns 71
.14 REFERENCE...uuutvtterieeeeeeeeeeeeeieieeeesesesissssssrsssssssesseseseeeeseseetessssesesssssssssssssssssssssssesssseseesssssssssssssssssssssssssssssssssnneesssssns 72
7 WORKING WITH BLOB DATA 75
2% T 2 61 1Y, Fon VN B T N URPRRRPRURRNt 75

7. 1.1 OUEPUE MELAAALA.........oeeueeeeeeeeeieeeeeeeeeesteeeesteeteseetesseessessesstessesssesseessesseessesssenssesssassesssessesssesssessnseesssseennes 75

7.1.2 INDUE MOUAAQALA..........eeuveeeereeeeeeeeieeiesteesteeeesteeeeessesstessessessesssessesssessesssesseessesssensesssensesnsessesnsessesssesseesnseesnns 76
7.2 THE IBLOB INTERFACE....uuvuvuttteeeteieeeeeeeeeeeieeeeeesesesssssssssssssssssssseseseesessesesessssesssssssssssssssssssssesessssessssesenessesssssssssnnnssens 76

7.2.1 IBIOD REfEIENCE........occeveveeeeeieeieeieeiesiesteseeteseestesseesesssesseeseessesssessesseessesssesseassessesssesseessesseassasssensenssseenns 77
7.3 READING BLOB DIATA ..ciiiiiiiiiiiiiiittttteteeeee ettt ee ettt eeesese bbb aaabaaeeeeeeeseseeeeseesesesessssssssssssssssasasarsrssesesesessssnnnneeens 78
7.4 CREATING OR IMODIFYING A BLOB...uuuuuuiuiiiiriiiiiiiieieieeieeieieieeeeeesesisssssseresseesseesereseeeeeeesesessssesssssssssssssssssssssesessssnnsneeens 78
7.5 REMOVING A BLOB.ooiiiiiitiiieiieceiiee ettt ettt eeettee e e e eeetaee e e eeetsaeeeeeesssaaeeeessbasaeeeeasssaaeeesenssssaeeeenssssnnsssnssnnnsnnn 79
7.6 USING BLOB FILTERS...evttiiiiiiiiiiiiiiiieiiieeeeceiititettete e eeeeeeeeeee et tetesesssssssssssasssasseseseeseseseeseeeesesessssssssssssssssssssssnnnnnesens 79
7.7 INLINE BLOBS....cceitttiiiiieiiteieeceeitteeeceeiitteeeeeeseteeeeeeeestaeeeeesessssseeeeesssseseeeassssaseesesassaseeessasssseessesssssssssssnnsensssssrannrnns 80
8 WORKING WITH ARRAY DATA 83
8.1 ARRAY IMETADATA c.eiiiiiiieieeeeeeieiininrtrerereeresreteteeeeeeetesesessesesessssssssssssssssssssseseseesessesessesessssssssssssssssssssssseseseeseeeeeessssns 83
8.2 THE LARRAY INTERFACE. .. .uuuutururerrerreeereeeeeeeeeeeeeeeesesesessssssssssssssssssssessssesessessesesesessssssssssssssssssssssssesesesssssssesesesssssnsnnn 84
8.3 READING ARRAY DIATA ciiiiiiiiiiiiiiiiieececcctttttreee et e ettt e ettt e e e s esesesssssbararsabesessesaaaeeeeeeseeeesesssssasssssssssssssserensenessnnan 85
8.4 CREATING OR MODIFYING AN ARRAY ..uuvurererrerrerereeeeeeeeeeeeessesesesssssssssssssssssssssessesessesessssssssssssssssssssssssssssssesesseseseesssssans 86
8.5 REDUCING ARRAY BOUNDS.....cceittiieiiiiiiiieeeecetteeeeeeeittreeeeeeitreeeeeestbaeeeeesesssseeeeeessraseessessssseeesesnsraseseesessnseessansnnnees 87
8.0 REMOVING AN ARRAY . .uuuuuuuuuururerereereerereeeeeeeeetetetessessssssssssssssssssssssseseseseeeeesesessssssssssssssssssssssssssssesessssessesesssnnnesssssssne 87
8.7 EVENT HANDLERS. ..ccieiiiiitireeeeeeiiteeeeeesirteeeeeeetteeeeeeessareeeeeesssseseeeessssseeeesassssssessessssssessensssssseesessssaseeeesenssnseessennsnees 87
9 WORKING WITH CHARACTER SETS 89
9.1 FIREBIRD CHARACTER SETS...uuuuuuuuuuuurerererrereerereeeeeeeeseesesessssesssssssssssssssssssssssessessessssssssesessssssssssssssssssssssssssesesesssssesennns 89
9.2 CHARACTER SET USAGE..uuttttiririeieieeeeieeieieeeeieseseiiisssssrssssssssssssseseeesessessssesesesssssssssssssssssssssessssesesssssssnsssessssssssnnsesssssss 90

9.3 THE DATABASE CONNECTION AND THE DEFAULT CHARACTER SET....uuuuuuururereireerereeeeeeeeeeeeeeessssesesssssssssssssssssssesessesesssssns 90

1S I A e} o) X ol TP URPTN 90
9.5 TRANSLITERATION RULES...cutttiiiiiiiiiiiiiiiiiieeeieeciciiitrttteree e e e et e eeeeeeeeeeeeeeesesesssssssssasassesssssseseeseseeseesesesesesassssssssssssssnnnn 91
9.6 TEXT BLOB HANDLING....uttttttitieieiieiieieieiieeeieeeieistareretseseseeteseeeeeeeeeeessssesesessssssssssssssssssssseseeseseeseesesesesessssssssssssssessnnn 91
9.7 USER DEFINED CHARACTER SETS...cecieeiureeeeeeiiureeeeeeseireeeeeesessseeessesssssessessssssssesssssssssessssssssesessesssssssssesssnnsnnnnnnnnnnssens 92
10 HANDLING ERROR CONDITIONS 93
10.1 EXCEPTIONAL ERROR HANDLING CASES....ccciieiurrrieeieirereeeeenitreeeeeesisreeeeeesesssseeeesessssssesessasssssessesssessessssssssssssssssssssns 94
10.2 THE ISTATUS INTERFACE......ccctuvteeeeeiirereeeeeeitereeeeeesisseeeeeesessreeeeeessssaseessessssessesessssssseeesessssssessesssssessessssssssssssssnnnnnn 94
10.2.1 Deprecation Of SQL ETTOT COde...........ccccceeeeveesieecreseesseseesseseessessessesssessesssessesssessesssessssssessssssessssssssees 94
11 WORKING WITH EVENTS 95
11,1 THE IEVENTS INTERFACE. . .iiittteeteutrtrtterereeeeeeeeeeeeeeeeeieeesesssssssssssssssesessesesseseseesessesesssesssssssssssssssssssesesesseseeseseneessssnns 95
11.2 ASYNCHRONOUS EVENT HANDLING.....ciiiiiiiiiiiiieiiiiiititttetereeeeeeeeeeeeeeeeesesesesensssssssssassesesseseeseseseesessssesesssssssnnnsessssses 96
11.3 SYNCHRONOUS EVENT HANDLING......uvvtieiieeiiieeieeeeeieeeeeeeeetteeeeeestreeeeeesentseeeeeeessseseseesnssaseeessssaseesesssssssnsssnssnnnsnnn 96
12 WORKING WITH SERVICES 97
12.1 THE SERVICE PARAMETER BLOCK (SPB)..cuutiiiiiiiieiiiiienieiste ettt et e sttt ste st e sbe e satesbeesatesssaesseesssnnaaesnanns 97
12.2 ATTACHING TO THE SERVICE IMIANAGER......cceettvrreeeeesiurreeeeeessreeeeesssseseeeessssssssessessssssessessssssssesessssssssssssnsssssessenssnssens 98
12.2.1 IServiceManager REfEIENCe..............couevuereevueseesieseeitessesseseessessessesssessesssessesssessesssessssssessesssesssesssssssees 98
12.3 STARTING A SERVICE.......cceeeeeererrururrrrsrererersesseseeeeeesessesessssessssssssssssssssssssssssssssesessesessssssesssssssssssssssssssssesesesssssesnnsnees 99
12.3.1 The Service RequUest BIOCK (SRB)........cccouiieeueniiesienieetenitetesitete st e ste st e ste st este st esbesstesbe st esbeeaeessessesaeens 99
12.3.2 LISt Of SETVICES...c..ecueeueeeeeieieetetetet ettt ettt sttt et st st et et et et et et eat e st e st e st eb e besb e st et ess et entenbenbeenbeesntesntanns 100
12.4 QUERYING A SERVICE....uuuvveeeeeeerrrreeesesirsreeeeessssseseseesasessesesassssseessssssssessessssssssseessssssssessassssssssssssssssessensssssessenssnssnns 101
12.4.1 The Service Query Parameter BIOCK (SQRB)........cc.cccuevueeiiiierienieeieniestenesitesieestesitessesatesveesaeeessseessneens 101
12.4.2 The Service ReqUeSt BIOCK (SRB).........ccuccueeeecuesierieseeeeseesteseesseseessessesssessssssesssessesssessesssessesssessesssessesns 102
12.4.2.1 RUNDNING SEIVICES.....eiettieiieeiteriteerteesieeeteesteesiteesseestessstesssseessseessseesssessssessssesnsseesaessseessssesssaessseessseesseessssnes 102
12.4.2.2 INFOTMAtiON REQUESES.......eecuirieriierieerieeteeterieesteetestesseestestesseesseessesssesseessesssesssensessesssenssesseensesssessaensesssesssesnnnne 102
12.4.2.3 SeUUNG PIOPEITIES. ...c..viiiutiieiieiiteiieeete ettt ettt et s ettt e e e e et e s bt e s be e e me e e seeeseesabeeseneesneesneeeneeeneenannn 103
12.4.3 TRE QUETY RESPONSE.......cc.eeeueeeeueeeeeutesieetesieete st ete st e e stt st e s st et e s bt ebesaeessesutenbesst e be s st enbesstenbeeatenseentesaeeas 103
12.5 DETACHING FROM THE SERVICE IMIANAGER.....uuuvutererereereereeeeeeeeeieiesessssessssssssssssssssssessessssseessesesesssssssssssssssssssssssesssssnns 104
12.6 BACKUP AND RESTORE SERVICES.....uuvteiieeiiureeeeeesiirreeeeesesreeeeeseesseeeseessssessessssssessessssssssssessessssssssssssssssssessesssnssnnnnnn 104
12.6.1 BacKup and ReStOre 0N the STVET.........c.cccueceerueriesierieriestesiestesiesitessesstesbtestesstestesatessesatessesaseessseessnseens 105
12.6.2 Backup and Restore using a File on the ClIent SYSteM...........ccuecueveererverserieeseeeesseseesseseessesssessesssesenns 105
13 DEPLOYMENT GUIDELINES 109
13.1 DEPLOYMENT ON WINDOWS..uuvurererererereeeeeeeeesesessesesssssssssssesssssssssssesessessssesesessssssssssssssssssssssssssssssssssssssesesssssesssssssnnns 109
13.1.1 Firebird 2.5 QNA EQETICToooeeeeeeeeeeeeee e eeeeeeeeaeeeeteeeesaeesssseesseseesessssssnseessseesssnsnssssseessnseessnnes 109
13.1.1.1 Firebird CHENt ONLY......cceoiririeierenteetestestest sttt ettt sttt et b e b st et be s bt b et e st e st et et et et et et et et et eaeneenne 109
13.1.1.2 The Embedded Fir€biId SEIVET..........cccuiiiiiieiieieiiee ettt eecte et ee vt e e eettaeeeeeaaeeeeeaseeeeeasaeeeessseeeennnnnnnnnnes 110
13.1.2 Firebird 3.0 QNA LALET...........cccueeeeeeieeeieeiteecieecreeeteesteesaessseesssessseessaesssessssessseesssessssesssesssssssessssssesssnnees
13.1.2.1 Firebird CHENE OMNLY....cccovuiriiirieriieiierierterieeste et esit et eteste st esteete st esteesbessbesstesseesseessesssesseensesssesssessesnsesnsessaenses
13.1.2.2 Firebird Embedded Server
13.1.3 FireDbird 4 ANd LALETc..veecveeeeeeieeeieeiteeette et ecteeecteeseesseessaessaeebaesssassseesssaesssesssesssessaeesessssesssessssennses
13.2 DEPLOYMENT ON LLINUX...uuuuuuuuuuururerererererereeeeeeeieiesessssesssssssssssessssssssseseseesessesesessssssssssssssssssssssssssssesesssssssnnesessssssnne
13.2.1 Firebird 2.5 QNA EQETIOToooeeeeeeeeeeeeee e eeeeeeeeeeeeeteeeesaeessssaessessesesssssssssesssseesssnsessssssessnseesssnes
13.2.1.1 Firebird CHENt ONLY.....cc.eoueririiieitirieesereet ettt ettt st et b ettt et e et et et et e s bt e sabeesaneenbaeenne
13.2.1.2 Firebird Embedded Server
13.2.2 Firebird 3.0 QNA LALET...........cccueeeueeeieeeieeiteestteecieeeteesteesaeesteesssessseessaesssassssesssesssessssesssesssssssessssssesssnsses
13.2.2.1 Firebird CHENE OMNLY....ccceiuiiiiirieriieiierierterieet ettt esteste st et ste st esteesbesssesssessa e seesbesssesseensesssesssensesnsesnsesaenses
13.2.2.2 Firebird Embedded Server
13.2.2.3 FATEDIIA Q..o ettt et eete e be e e eteeebaeebaeetbeeeaseessseessseessseeesseessssensseessssesseensssessseessssaeeeennses
14 CLIENT SIDE JOURNALING 115
14.1 USING CLIENT SIDE JOURNALING....cceeeeeteuturrurrrerererereeeeereeeeeeesesesesssssssssssssssssssssssssssssssssessesssssssssssssssssssssssssssssssssnnnns 115

14.2 JournaL FiLE SynTAX
14.2.1 Transaction Start:
14.2.2 Transaction Commit :
14.2.3 Transaction Commit retaining :
14.2.4 Transaction Rollback:
14.2.5 Transaction Rollback retaining:
14.2.6 Update/Insert/Delete

14.4.1 Database SCheme DePendenCies.............cccueeeeeeveesieesresessseseessesseessesesssessesssessssssesssessessesssesssessessasssessns
14.4.2 Use of IBX$JOURNALS and IBXSSESSIONS.........cceeueeeiresiresirienisienisiesteessesessesessessssesssessesssessessesnsen
14.4.3 Use of the IBX$JOURNALS TaDIE fOr RECOVETY......c.cvrueerueireeirieirienisienteieneesensesessestsseessesseessessesseenees

APPENDIX A PARAMETER BLOCKS
APPENDIX B EXAMPLE PARSING OF THE SERVICE RESPONSE BLOCK

APPENDIX C TIME/TIMESTAMP WITH TIME ZONE
C.1 DATE AND TIME COLUMN TYPES....ceiiittiiitieiiieeeeieeeeitteseiteeeeteesesteesneeessmseessnneessaseesssneeesnneesenseessnsasesssnnnnnnneeeeens
C.2 TIMESTAMP WITH TIME ZONE........ccoeotiitertieterieeieseeiesteetesteeeessseeessesssesseessesssessesssessessssessssesssseessssesns
C.2.1 Entering a Timestamp With Time ZoNe VAIUE...............cc.ccueeerveeserieeseeceeseestesieessessesssessesssessesssssessseesnns
C.2.2 Rendering a TIMESTAMP WITH TIME ZONE........c..ccoueeueeiieeteseeeeseeeessessesseessessesssessesssesssesssssesssesanes
C.3 TIME WITH TIME ZIONE .. uuttiiiiiieriteieiiteeesteessteeesteessateestteesssseessaseeesssaeesssteesssaesnssaeesseesssssessnssesssseesssssnsssaseeees
C.3.1 Inputting a TIME WITH TIME ZONE DQtA TYPe.......coccueeueriiiriensieeeieeeeeeeessieestesireestessseesaessveessenneees
C.3.2 TIME WITH TIME ZONE USE CASES........ccovtreuiruerririeirerteresteareetesstessesstessesstesesstessesssessessseesossesssssesnns
C.3.3 DISCUSSION....uuveieevieieieeeeiieeeeiteeseieeessstesesseesssseeesstesassaeessssesssssesssssesssseessssseesssseesasseeesssseeesssenssssssssseeeeses
C.3.4 The IBX IMPIeMENLALION.......c.cecveereeieeeeeieeeesieeeeseestessessessesssesseessasseessesssessesssessesssessesnsessesssesseessesssessessns
C.4 THE TIME ZONE DATABASE...cuutieuttetienutenteesttesiteesstesiteesstesteesseesstessstessesseessessseesssessseesseessseesssessseessnsesesssseeessnn
C.4.1 The Firebird Time ZoNe DAtADASE...............ccccoeeeeeeeieeireeieesreeeesiessessesssessesssessesssessesssesssessessasssssessssessnns
C.4.2 Updating the ICU and Time Zone Database Under LiNUX.............cccccuecuereerverieesresseesesseesessssesssssessssessnns
C.4.3 Updating the ICU and Time Zone Database under Windows..............ccoceevueeerrenreesieneeseneeneeneesesseeenns
C.4.4 Server Side CONSIAETALIONS..........cccueeeeeriueriiesiteesteesiteeseestesssessessseesssesssessssesssessssessseesssesssessssssssessssssees
C.4.5 Client Side CONSIAEIALIONS............ccueveeererserierieerientestestestestestetete ettt st sae st e besaesteaesenteneeneenteseesanesane

Vi

Introduction

Introduction

The Firebird Pascal API Guide is a guide to the Firebird API created by MWA Software as Pascal
Language Bindings for accessing the Firebird Client APl from a Pascal Program. The purpose of
these language bindings is to provide the API in a format where all data types for SQL data,
interface parameters and results are native Pascal types. The Pascal API is pitched at a similar
level and purpose to the IBPP Firebird API provided to the C++ world. The package is intended to
be suitable for use on any platform supported by the Free Pascal Compiler. The package is simply
known by the abbreviation fbintf. It is a required dependency for version 2 onwards of IBX for
Lazarus.

From release 2.0.2 onwards, fbintf also supports the Delphi Win32 compiler.

The APl is intended to be simple to use and to place the minimum burden on the APl user when it
comes to managing the Firebird client library and the various Pascal objects that are created to
provide the API. It is implemented as reference counted COM interfaces which, for the API user,
are as easy to use as other managed types such as AnsiStrings and dynamic arrays. The user
only needs to worry about accessing and using the interface; disposing of interfaces is performed
automatically whenever an interface goes out of scope.

Two interface implementations are provided. One is for the new Firebird 3 Client API and the other
for the legacy Firebird Client API used for Firebird 2.x and earlier. The Firebird 3 API
implementation is used whenever possible and the older API only if the Firebird 3 API is not
available (see also 2.5).

The remainder of this guide is concerned with the Installation of the language bindings and how the
Pascal API is used. The organisation of this guide has been deliberately based on the InterBase 6
API Guide. This is still the primary reference for the legacy Firebird 'C' APl and provides a greater
depth of discussion than this guide is intended to provide. Readers may occasionally find it useful
to refer to the InterBase 6 API Guide and by using the same chapter headings the intention is to
provide easy cross-reference.

Issue 1.11 1

Firebird Pascal API (fbintf) Guide

The motivations for developing these language bindings are:
* To provide a route for the updating of the IBX for Lazarus package to support the new
Firebird 3 API as well as providing continued support for the legacy Firebird API without
having to separately maintain two codebases.

* To provide a standard FCL level Firebird API for use with Free Pascal (FPC) and Delphi
without requiring the additional complexity introduced by the TDataset model.

* To provide access to the Firebird API using Pascal native data types without requiring the
user to be aware of bit orders or actual encodings.

* To provide a complete implementation of the Firebird API in Pascal.

This APl is offered to the community as a standard Pascal API for all versions of the Firebird
Relational Database.

1.1 References

1. InterBase 6 API Guide (http://www.ibphoenix.com/files/60ApiGuide.zip)

2. Firebird 2.5 Language Reference

(http://firebirdsgl.org/file/documentation/reference_manuals/fblangref25-en/html/
fblangref25.html)

3. InterBase 6 Data Definition Guide (http://www.ibphoenix.com/files/60DataDef.zip)

4. Firebird 3.0.1 Release Notes
(http://www.firebirdsgl.org/file/documentation/release_notes/html/en/3_0/rlsnotes30.html

5. IBX for Lazarus (MWA Software — http://www.mwasoftware.co.uk/ibx)

1.2 Change History
1.2.1 Version 1.1
This version has been updated to include:
* API changes to IFirebirdAPI.CreateDatabase
* API addition: IStatement.GetPerfStatistics and I1Statement.EnableStatistics
* API Addition: lAttachment.GetArrayMetaData
* API Version Number added.
* Clarification on the handling of Firebird Character set “NONE”". (see 9.5).
1.2.2 Version 1.2

Version 1.2 is updated to include API changes and guidance resulting from code changes to
support the Delphi Win32 compiler. This includes:

* All units now compiled using “mode delphi”.

http://www.ibphoenix.com/files/60ApiGuide.zip
http://www.mwasoftware.co.uk/ibx
http://www.firebirdsql.org/file/documentation/release_notes/html/en/3_0/rlsnotes30.html
http://www.ibphoenix.com/files/60DataDef.zip
http://firebirdsql.org/file/documentation/reference_manuals/fblangref25-en/html/fblangref25.html
http://firebirdsql.org/file/documentation/reference_manuals/fblangref25-en/html/fblangref25.html

1.2.3

1.24

Introduction

The AnsiString type is now used instead of the default “string” type. For FPC this is type
compatible with the previous version and implies no change. For Delphi, this enforces
AnsiString as the interface string type instead of the UTF-16 unicodestring that is used by
default for Delphi. As Firebird does not support UTF-16 and the preferred encoding is UTF-
8, the choice of AnsiString is thus appropriate for a Firebird interface.
Delphi installation instructions.

Version 1.3
Move GetCharsetName, CharSetID2CodePage, CodePage2CharSetID,
CharSetName2CharSetID, CharSetWidth from IFirebirdAPI to IAttachment. This is a better
data model as the character sets supported can be updated on a per database basis. That
is it is possible to add a (Firebird) user defined character set to a database.

Version 1.4
IAttachment now includes HasDefaultCharSet and GetDefaultCharSetID methods.

IAttachment now has GetODSMajorVersion, GetODSMinorVersion and GetRemoteProtocol
methods.

IAttachment now has a GetConnectString method.

Correction to example of using the services interface to backup to the client side. Example,
now recognises case where server returns a busy status (isc_info_svc_timeout). See
12.6.2.

Database Information requests now include isc_info_active_tran_count,
isc_info_creation_date and fb_info_page_contents.

New section on information available about a database attachment (see 4.9).

IfirebirdAP1.GetServiceManager now has an overloaded variant that allows a non-standard
port number to be specified.

Version 1.5
getProtocol and getPortNo added to IServiceManager.
IServiceManager: start and query functions updated to allow for improved error handling.
IAttachment: GetSecurityDatabase function added to interface
Version 1.6
Use of named parameters enclosed in double quotes added to 6.1.1
New function “LoadFBLibrary” (see 3.2)
New Interface: IFirebirdLibrary (see 3.6).

GetFirebirdAPI member function added to IAttachment and IServiceManager.

Issue 1.11 3

Firebird Pascal API (fbintf) Guide

1.2.8

GetFBLibrary member function added to IFirebirdAPI.
Multi-threading discussion added (see 3.8).

Version 1.7
GetFBVersion function added to IAttachment. See 4.9.
IColumnMetadata.GetDateTimeStrLength added (See 6.3.2).

Case sensitive SQL parameter name support added on a per SQL statement basis. See
6.1.1.

Version 1.8

Linux Only: FIREBIRD environment variable, if set, used to help locate the client library

(see 3.3.1). This provides compatibility with the existing Windows procedures for locating

the client library.

Firebird 4.0 support added

o Firebird low level APl updates incorporated into codebase.

o Support for new Firebird 4 column types: TIME with Time Zone, TIMESTAMP with Time
Zone (see 6.6 and Appendix C), DecFloatl6, DecFloat34 and extended precision
NUMERIC and DECIMAL types (see 6.5).

New Interface: ITimeZoneServices (see 4.13)

New API Calls:

o

ISQLParams.

e}

function GetHasCaseSensitiveParams: Boolean;

[e]

IColumnMetaData

[e]

function GetStatement: IStatement;
function GetTransaction: ITransaction;

o}

o

IResults.

o

function GetStatement: IStatement;

o |Attachment

° function OpenBlob(transaction: ITransaction; BlobMetaData: IblobMetaData;
BlobID: TISC_QUAD; BPB: IBPB=nil): IBlob; overload;

° function OpenArray(transaction: ITransaction; ArrayMetaData: IarrayMetaData;

ArrayID: TISC_QUAD): IArray; overload;
function GetTimeZoneServices: ITimeZoneServices;
function HasTimeZoneSupport: boolean;

e}

o

o 0o o o0 o o

[e]

e}

[¢]

O 0O O 0o O O ©o o

[e]

Issue 1.11

Introduction

IFirebird API

function GetClientMajor: integer;
function GetClientMinor: integer;
function HasDecFloatSupport: boolean;
function HaslLocalTzDB: boolean;
function HasTimeZoneSupport: boolean;
function HasExtendedTZSupport: boolean;

IFBIMasterProvider

function GetIMasterIntf: Firebird.IMaster; (see 3.7)

ISQLData (see 6.5.1)

function GetStrDatalLength: short;
procedure GetAsDateTime(var aDateTime: TDateTime; var dstOffset: smallint;
var aTimezonelID: TFBTimeZonelID); over load;
procedure GetAsTime(var aTime: TDateTime; var dstOffset: smallint;
var aTimezonelID: TFBTimeZoneID; OnDate: TDateTime); overload;
procedure GetAsTime(var aTime: TDateTime; var dstOffset: smallint;
var aTimezone: AnsiString; OnDate: TDateTime); overload;
procedure GetAsTime(var aTime: TDateTime; var dstOffset: smallint;
var aTimezonelID: TFBTimeZonelID); over load;
procedure GetAsTime(var aTime: TDateTime; var dstOffset: smallint;
var aTimezone: AnsiString); overload;
procedure GetAsDateTime(var aDateTime: TDateTime; var dstOffset: smallint;
var aTimezone: AnsiString); overload;
function GetAsUTCDateTime: TDateTime;
function GetAsBCD: tBCD;

ISQLParam (see 6.4)

function GetStrDatalength: short;
procedure GetAsDateTime(var aDateTime: TDateTime; var dstOffset: smallint;
var aTimezoneID: TFBTimeZoneID); over load;
procedure GetAsDateTime(var aDateTime: TDateTime; var dstOffset: smallint;
var aTimezone: AnsiString); over load;
procedure GetAsTime(var aTime: TDateTime; var dstOffset: smallint;
var aTimezoneID: TFBTimeZonelID; OnDate: TDateTime); overload;
procedure GetAsTime(var aTime: TDateTime; var dstOffset: smallint;
var aTimezone: AnsiString; OnDate: TDateTime); overload;
procedure GetAsTime(var aTime: TDateTime; var dstOffset: smallint;
var aTimezoneID: TFBTimeZoneID); over load;
procedure GetAsTime(var aTime: TDateTime; var dstOffset: smallint;
var aTimezone: AnsiString); over load;
function GetAsUTCDateTime: TDateTime;
function GetAsBCD: tBCD;
function GetStatement: IStatement;
function GetTransaction: ITransaction;
procedure SetAsTime(aValue: TDateTime; OnDate: TDateTime;
aTimeZoneID: TFBTimeZoneID); over load;
procedure SetAsTime(aValue: TDateTime;OnDate: TDateTime;
aTimeZone: AnsiString); overload;
procedure SetAsTime(aValue: TDateTime; aTimeZoneID: TFBTimeZoneID); overload;
procedure SetAsTime(aValue: TDateTime; aTimeZone: AnsiString); overload;
procedure SetAsDateTime(aValue: TDateTime; aTimeZoneID: TFBTimeZoneID);
overload;
procedure SetAsDateTime(aValue: TDateTime; aTimeZone: AnsiString); overload;
procedure SetAsUTCDateTime(aUTCTime: TDateTime);
procedure SetAsBcd(aValue: tBCD);

New IArray API Calls

Firebird Pascal API (fbintf) Guide

procedure GetAsDateTime(index: array of integer; var aDateTime: TDateTime;
var dstOffset: smallint; var aTimezoneID: TFBTimeZoneID); over load;
procedure GetAsDateTime(index: array of integer; var aDateTime: TDateTime;
var dstOffset: smallint; var aTimezone: AnsiString); overload;
procedure GetAsTime(index: array of integer; var aTime: TDateTime;
var dstOffset: smallint; var aTimezoneID: TFBTimeZonelD;
OnDate: TDateTime); overload;
procedure GetAsTime(index: array of integer; var aTime: TDateTime;
var dstOffset: smallint; var aTimezone: AnsiString;
OnDate: TDateTime); overload;
function GetAsUTCDateTime(index: array of integer): TDateTime;
procedure SetAsDateTime(index: array of integer; aValue: TDateTime;
aTimeZoneID: TFBTimeZonelD); overload;
procedure SetAsDateTime(index: array of integer; aValue: TDateTime;
aTimeZone: AnsiString); overload;
procedure SetAsTime(index: array of integer; aValue: TDateTime;
OnDate: TDateTime; aTimeZoneID: TFBTimeZoneID); overload;
procedure SetAsTime(index: array of integer; aValue: TDateTime;
OnDate: TDateTime; aTimeZone: AnsiString); overload;

1.2.9 Version 1.9

1. DB Information integer type widened to int64 (see 4.8.2)

2. Support for inline blob encoding (see 7.7).

3.

Support for Firebird 4 IBatch interface (see 6.10).

1.2.10 Version 1.10

1.

Stale reference checks can now be disabled on a per statement basis (see 6.13).
New interface IParamMetaData (see 6.3.1).
Can now set cursor name when opening a cursor (see 4.12

Support for scrollable cursors (see 4.12, 6.14, and 6.8)

1.2.11 Version 1.11

1.

Support package fbudr added for support of User Defined Routines (UDRSs), and package
fbudrtestbed for client side debugging of UDR libraries. See separate document “Writing
User Defined Routines (UDRS).

Client side journaling added - see chapter 14.

Transactions may now be given a local transaction name. This is to aid their identification in
the journal file (see 5.4).

A TPB can now be returned as a text string (see 5.1).
Transaction information requests now supported (see 5.11).
New IAttachment Helper functions (see 4.12)

o function HasTable(aTableName: AnsiString): boolean;

o function HasFunction(aFunctionName: AnsiString): boolean;
o function HasProcedure(aProcName: AnsiString): boolean;

Introduction

o function GetAttachmentID: integer;
o function GetCharSetID: integer;

7. |Statement: if the BatchRowLimit is set to maxint, the maximum possible buffer size will be
allocted for batch operations (see 6.10.2).

8. New unit FBNumeric. This provides the implementation of the IFBNumeric interface, and
concentrates all handling of Fixed Point numbers. New ISQLItem and ISQLParam functions
getAsNumeric and setAsNumeric allow for direct retrieval and manipulation of numerics

without loss of precision. See 6.7.

Issue 1.11

Installation and Preparation for Use

Installation and Preparation for Use

The software is provided as a source code product only and distributed under the InterBase Public
License and the compatible Initial Developer's Public License. Copies of both of these licences are
included as part of the source code package. The package itself is a compressed archive in either
tar.gz format or .zip format.

In order to use the Firebird Pascal API for development or operationally, the Firebird Client library
must also be installed on the same system.

2.1 Installation under Lazarus

If you are also using IBX for Lazarus then the fbintf package is automatically installed with IBX. The
following instructions are only relevant when installing the fbintf package without IBX.

To install under Lazarus, you must first expand the archive file in some suitable and permanent
location. This could be the Lazarus component directory, or some other directory that you set aside
for third party components.

Now open the Lazarus IDE and select the 'Package->Open Package File (*.Ipk)’ menu item. Now
locate and open the 'fbintf.Ipk’ file which should be found in the directory into which you expanded
the archive and within the 'fbintf' directory. The Package Manager Dialog should now appear as
shown below.

Issue 1.11 9

Firebird Pascal API (fbintf) Guide

Package fbintf V0.0

|] &= EE,:' = 7] 2]

Compile Use >> Add => Options Help More ==
= BE (18 | [
- @ Files

=] IB.pas

=| IBErrorCodes.pas
| IBExternals.pas
| IBUtils.pas

b client
w 3 Required Packages
i FCL

File Properties
Files: 34, has Register procedure: 0, in package uses section: 33

lllustration 1: The Package Manager

Click on the compile button to install. The package should compile without errors and is available
for immediate use. The package manager dialog may now be closed.

Note that the package is run time only and does not need to be installed into the IDE.

2.2 Installation under FPC

You can alternatively install the Firebird Pascal API as part of the FPC library and hence available
outside of Lazarus. Note that this is an alternative and if this installation approach is taken, the
package should not be installed under Lazarus. This option is intended for knowledgeable users
only.

The fbintf archive should be expanded into some temporary location. The top level directory
includes a “Makefile.fpc” file, and this can be used to create a Makefile suitable for the target
platform using the fpcmake utility. The “make” command can then be used to generate the
compiled units in the “lib” directory. These are optimised units with no debug information. The
object files can then be copied to your FPC library files directory.

For example, if you are running on Linux on an amd64 platform then the compiled units will be
found in the ./lib/Ix86_64-linux directory after running “make”. Assuming fpc 3.0.0, all fpc object
files are located in

{fusr/lib/fpc/3.0.0/units/x86_64-linux

You may create a directory within this location for fbintf and copy the object files to it. For example:

10

Installation and Preparation for Use

export FPCDIR=/usr/lib/fpc/ fpc -iV®

fpcmake

make

sudo mkdir /usr/1lib/fpc/3.0.0/units/x86_64-1inux/fbintf

sudo cp ./1ib/x86_64-1linux/* /usr/1lib/fpc/3.0.0/units/x86_64-linux/fbintf

The files used to build fbintf may now be removed.

2.3 Installation under Delphi
Under Delphi, fbintf may be built and used as a runtime package.

To install under Delphi, you must first expand the archive file in some suitable and permanent
location. This could be the Delphi directory, or some other directory that you set aside for third
party components.

To build fbintf as a runtime package, open the fhintf.dproj file in the Delphi IDE and, in the Project
Manager window, right click on the “fbintf.bpl” entry and select “Build” from the drop down list. By
default, Delphi should compile the package and save it as “fbintf.bpl” in either fbintAWin32\Debug
or fbintAiWwin64\Debug, alongside “fbintf.dcp”.

To use fbintf in your project, open your project in the Delphi IDE and, in the Project Manager
window, right click on the project name and select “options”. In the Project Options dialog, select
“Run-time Package” in the left hand window and add fbintf to the list of packages in the right hand
window.

If you select the list of run-time packages in the right hand window, a button should appear at the
right of the line. Click on this button and the “Run Time Package” dialog appears. Click on the
folder button and navigate to and select the “fhintf.bpl” file. Now click on the “Add” button to add
fbintf to the list of run time packages.

When you deploy your program, remember to include the “fbintf.bpl” file in the program's
application folder.

2.4 Installing Firebird

You need access to a minimum of the Firebird Client library in order to use the fbintf package. This
applies to both development and deployment. Guidelines for deployment are give in chapter 13.

On a development system, the recommended approach is to download a pre-compiled installation
package from http://www.firebirdsgl.org and install the full system including examples. This will
ensure that the example “employee” database is both installed and available for use by the fbintf
testsuite, and a local server is available for testing. Firebird installation packages are available for
both Linux and Windows as will as OSX.

With Linux, it is also possible to use the packages provided with your distribution. However, these
will not necessarily be up-to-date. Under Debian/Ubuntu the example database is also provided as
a separate package and you will need to install this package as well as unpack the database from
a gzip archive and set the access permissions correctly before running the test suite.
Paradoxically, unless you are very familiar with Firebird and Linux, it is often easier to install the
firebirdsgl package than the one from your distro.

After installation, you should check that the “employee” is correctly listed in the “aliases.conf file in
the Firebird installation folder. For example, with 32-bit Firebird under Windows, the file

Issue 1.11 11

http://www.firebirdsql.org/

Firebird Pascal API (fbintf) Guide

C:\Program Files (x86)\Firebird\Firebird 2 5\aliases.conf

should contain the line:

employee = C:\Program Files (x86)\Firebird\Firebird 2 5\examples\empbuild\employee.fdb

2.5 Which Firebird API?

Firebird 3 introduces a new API while continuing support for the legacy API. Older versions only
support the legacy API. By default the fbintf package provides implementation support for both
APIls. The Firebird 3 APl is used if available and the legacy API if not.

It is possible to limit fbintf at compile time to one or other API. This means that the choice is fully
predictable and avoids having to compile both APIs into the same program, whilst limiting your
application as to which versions of Firebird it is compatible with. However, if you know that you are
(e.g.) always going to ship with Firebird 3, then it may well make sense to limit the API choice at
compile time.

The compile time choice is made by defined symbols located at the head of the “IB.pas” file. These
are:

{$DEFINE USEFIREBIRD3API}
{$DEFINE USELEGACYFIREBIRDAPI}

Simply remove or comment out one or other of these symbols (e.g. by inserting a space between
{ and $ characters) in order to limit the choice of API. For example, modifying the above to:

{$DEFINE USEFIREBIRD3API}
{ $DEFINE USELEGACYFIREBIRDAPI}

will ensure that when compiled, only the Firebird 3 API is available for use.

12

Programming with the Firebird Pascal API

Programming with the Firebird
Pascal API

There are no LCL dependencies and the Firebird Pascal API may be used from the Lazarus IDE or
any other development environment for FPC.

3.1 Using the API in your Project

If the package has been installed under Lazarus then you need to add the fbintf package to the list
of required packages for your application. The API creates additional threads in order to manage
Firebird Events and hence the Project's custom options should include “-dUseCThreads”.

If you are developing a console mode Pascal program outside of Lazarus then you should include
the “cthreads” unit as the first unit in your program file's uses clause.

All units that access the Firebird Client APl must include the “IB” unit in their uses clause. Units
that make use of symbolic constants for Firebird Engine error codes should also include the
“IBErrorCodes” unit in their uses clause. These units were originally part of IBX and their names
reflect their origin.

3.2 Accessing the API

The IFirebirdAPI interface provides access to the FirebirdClientAPI. This, like all interfaces
provided by the API, is reference counted and hence automatically managed. The interface is
released when it goes out of scope and the interface user is not required to release or free the
interface.

By default, this interface is provided by the function:

function FirebirdAPI: IFirebirdAPI;

Issue 1.11 13

Firebird Pascal API (fbintf) Guide

The first time the function is called, it locates and loads the Firebird Client Library and then
determines which version of the Firebird API to use. If it can, it will load the Firebird 3 Client API,
otherwise and if this is not available, it will load the Firebird legacy API. A reference to the loaded
API is then returned. On subsequent calls to the function, the currently loaded API is always
returned.

If the function is unable to load the API, an exception is raised.

From release 1.1.3 onwards, it is also possible to specify the actual location of the Firebird Client
Library using the function:

function LoadFBLibrary(aLibPathName: string): IFirebirdLibrary;

This returns an interface to the library itself. A member function of this interface returns the
IFirebirdAPI for this library (see 3.6).

Note: it is possible to load different versions of the Firebird Library simultaneously, each with a different
instance of IFirebirdAPI.

3.3 Locating the Firebird Client Library

This section is concerned with describing the algorithm used to locate the Firebird Library when the
FirebirdAPI function is used to provide the IFirebirdAPI interface.

The location of the Firebird Client Library depends upon the platform and the algorithm used is
different for Linux, Windows and Darwin. Each is discussed below. It is also possible to override
the default library name list (see 3.3.4).

3.3.1 Under Linux
The default list of Firebird Client Library names is given as a colon separated list:
For the Firebird 3 API:

libfbclient.so: libfbclient.so.2

For the Legacy API:

libfbembed.so: libfbembed.so.2.5:1libfbembed.so.2.1:libfbclient.so:libfbclient.so.2

The FirebirdAPI function will try to load each in turn until it is successful. The Linux loader will, in
turn, look in the standard locations for the library. If the library is in a non-standard location then
this can be indicated by

a) Calling the LoadFBLibrary function with an explicit library path prior to any use of the
Firebird API.

b) Setting the FIREBIRD environment variable prior to running a program using the Firebird
Pascal API. The value of the variable is assumed to be the path of a Firebird installation.
The client library may be located in the root installation directory or the 'lib* subdirectory. If
the client library cannot be found using FIREBIRD environment variable then default
locations are searched.

c) Setting the LD_LIBRARY_PATH environment variable prior running the program in order to
include another location in the list of default locations. e.g.

14

Programming with the Firebird Pascal API

export LD_LIBRARY_PATH=/opt/firebird/1ib:$LD_LIBRARY_PATH

The above can be run as part of a shell script and extends the existing path by telling the Linux
loader to look in “/opt/firebird/lib”. This has been chosen as an example, as it is a common location
when Firebird is installed from a package* downloaded from http://www.firebirdsgl.org.

3.3.2 Under Windows

The Firebird Pascal API uses the following algorithm to locate the Firebird DLL. The algorithm
terminates as soon as the library has been located:

1. When the Firebird Library is to be loaded, fbintf first looks in the same folder as the
application executable is located. It checks to see if fbembed.dll (the embedded server
DLL) is present here. If it is then this is loaded. If not then it checks to see if fbclient.dll is
present. If so, then it is loaded.

In the latter case, fbintf also sets the FIREBIRD environment variable to the path to this
folder, prior to loading the library. This has the effect of forcing the Firebird Client to look
for the firebird.conf and firebird.msg files in the same folder. They must thus also be
installed here. This is to ensure that the DLL uses the correct versions of these files. If
the FIREBIRD environment variable is not set then the DLL will use the Windows
registry to find the files. If another Firebird installation is present on the same system this
may point to a different version of these files.

2. If the FIREBIRD environment variable is set (prior to step 1) then the directory this points
to is searched for the FB Client DLL and then the underlying "bin" directory

3. fointf uses the Windows Registry to locate the most recent Firebird installation. It opens
the registry key HKEY_LOCAL_MACHINE\SOFTWARE\Firebird Project\Firebird Server\
Instances, and then reads the “Default Instance” string value. This is then assumed to be
the full path Firebird installation. If the fbclient dll is present in this folder's “bin” subfolder,
then the DLL is loaded.

Note that in this case, the FIREBIRD environment variable is not set as the Firebird Client Library
will also use the same registry entries to locate its support files.

4, fbintf now looks in the default installation folders for first Firebird 3.0, then Firebird 2.5
and finally Firebird 2.1. These are <Program Files Folder>\Firebird\Firebird_2_x

5. fbintf then uses the Windows Path to search for and load fbclient.dll.

6. If the DLL is still not found, then in quiet desperation, fbintf will attempt to load the legacy
InterBase gds32.dll again using the Windows Search Path.

In practice, case 1 above should be used for deployed applications, whilst case 3 is the preferred
approach for a development system. Case 2 is a special case for unusual installations, while the
remaining cases are really attempts to get something to work on a broken system.

INote that if you install using the installation script provided with Firebird then the library files are installed in a standard
location and there is no need to set the LD_LIBRARY_PATH variable.

Issue 1.11 15

http://www.firebirdsql.org/

Firebird Pascal API (fbintf) Guide

3.3.3 Under Darwin (OSX)

Darwin is treated as an extension of the Unix algorithm. If the standard unix search algorithm fails
to the find the Firebird library then the loader will try:

ILibrary/Frameworks/Firebird.framework/Firebird

and then
[Library/Frameworks/Firebird.framework/Libraries/libfbclient.dylib
in the hope of finding the Firebird client library.

3.3.4 Overriding the Default Library Name

In cases where the above algorithm will fail to find the Firebird Client library then two approaches
are available to explicitly direct fbintf to the Firebird Client library instead of using the above
algorithm. (See also 3.2 and the LoadFBLibrary function).

Note: the mechanisms described in this section have been replaced by the LoadFBLibrary function and use
of the FIREBIRD Environment variable. They are deprecated and may be removed in the later version.

3.3.4.1 The FBLIB Environment Variable

If this environment variable is set, then it is assumed to identify by an absolute or relative path, the
pathname of the Firebird Client library. The fbintf loader will try to load this library. If this fails then
no further attempt is made to load the Firebird Client Library.

Note that this feature has to be explicitly enabled. The AllowUseOfFBLIB variable is defined in the IB unit
and defaults to false. It must be set to true before the Firebird Pascal Client API is accessed in order to
enable use of the FBLIB environment variable.

3.3.4.2 The OnGetLibraryName Event Handler

The OnGetLibraryName event handler is defined in the IB unit and has the type:

TOnGetLibraryName = procedure(var libname: string);

If this event handler is set before the first call the the Firebird Pascal Client API then it is called
and should return the absolute or relative path, the pathname of the Firebird Client library. The
fointf loader will try to load this library. If this fails then no further attempt is made to load the
Firebird Client Library. If the event handler returns an empty libname then it is ignored.

3.4 API Version Number

The IB.pas file includes API version information as compile time constants. These can be
referenced from other units to modify behaviour according to the API Version used.

These constants are:

FBIntf_Major
FBIntf_Minor
FBIntf_Release
FBIntf_Version

|
In o

16

Programming with the Firebird Pascal API

3.5 Reference

IFirebirdAPI = interface
{Database connections}

function
function

AllocateDPB: IDPB;
OpenDatabase(DatabaseName: AnsiString; DPB: IDPB;

RaiseExceptionOnConnectError: boolean=true): IAttachment;

function

CreateDatabase(DatabaseName: AnsiString; DPB: IDPB;

RaiseExceptionOnError: boolean=true): IAttachment; overload;

function

CreateDatabase(sql: AnsiString; aSQLDialect: integer;

RaiseExceptionOnError: boolean=true): IAttachment; overload;

{Start Transaction against multiple databases}

function
function

function

{Service
function
function
function

function

AllocateTPB: ITPB;
StartTransaction(Attachments: array of IAttachment;

TPB: array of byte; DefaultCompletion: TTransactionCompletion=taCommit;

aName: AnsiString='"'): ITransaction; overload;
StartTransaction(Attachments: array of IAttachment;

TPB: ITPB; DefaultCompletion: TTransactionCompletion=taCommit;
aName: AnsiString='"'): ITransaction; overload;

Manager}
HasServiceAPI: boolean;
AllocateSPB: ISPB;
GetServiceManager (ServerName: AnsiString; Protocol: TProtocol;
SPB: ISPB): IServiceManager; overload;
GetServiceManager (ServerName: AnsiString; Port: AnsiString;
Protocol: TProtocol; SPB: ISPB): IServiceManager; overload;

{Information}

function
function
function
function
function
function
function
function
function
function

GetStatus: IStatus;

GetLibraryName: string;
IsEmbeddedServer: boolean;
HasRollbackRetaining: boolean;
GetImplementationVersion: AnsiString;
GetClientMajor: integer;
GetClientMinor: integer;
HasTimeZoneSupport: boolean;
HasDecFloatSupport: boolean;
HasExtendedTZSupport: boolean;

{Firebird 3 API}

function
function
function

HasMasterIntf: boolean;
GetIMaster: TObject;
GetFBLibrary: IfirebirdLibrary;

{BCD Field Support}
procedure SQLDecFloatEncode(aValue: tBCD; SQLType: cardinal; bufptr: PByte);

function

SQLDecFloatDecode(SQLType: cardinal; bufptr: PByte): tBCD;

{Time Zone Support - uses client local ICU}

function
function
function
function

function

end;

Issue 1.11

TimeZoneID2TimeZoneName(aTimeZoneID: TFBTimeZoneID): AnsiString;
TimeZoneName2TimeZoneID(aTimeZone: AnsiString): TFBTimeZonelD;
LocalTimeToUTCTime(aLocalTime: TDateTime;

aTimeZone: AnsiString): TDateTime;
UTCTimeToLocalTime(aUTCTime: TDateTime;

aTimeZone: AnsiString): TDateTime;
GetEffectiveOffsetMins(aLocalTime: TDateTime;

aTimeZone: AnsiString): integer;

17

Firebird Pascal API (fbintf) Guide

18

Method Use

AllocateDPB Allocates an empty Database Parameter Block
(DPB) (see 4.1).

OpenDatabase Attach to an existing Database (see 4.3)

CreateDatabase Create a new Database (see 4.2).

AllocateTPB Allocate a Transaction Parameter Block (TPB)
(see 5.1)

StartTransaction Start a new transaction (see 5.3).

HasServiceAPI

Query whether the Service API is supported by
the Firebird Client API.

AllocateSPB Allocate a Service Parameter Block (SPB) (see
12.1)

GetServiceManager Attach to the Service Manager (see 12.2)

GetStatus Returns the IStatus interface (see 10.2).

GetLibraryName Returns the filename (without the path) of the
file containing the loaded Firebird Client Library.

IsEmbeddedServer Returns True if the Firebird Client library also

provides an embedded server.

HasRollbackRetaining

True if the Firebird Client API supports
RollbackRetaining

GetlmplementationVersion

Returns '2.5' for the legacy API, or '3.x' for the
Firebird 3 API, where X' is replaced by the API
version returned by the Client Library.

GetClientMajor

Returns the major version number for the
Firebird client interface library.

GetClientMinor

Returns the minor version number for the
Firebird client interface library.

HasTimeZoneSupport

Returns true if the Firebird client interface library
includes support for the TIME WITH TIME

Programming with the Firebird Pascal API

Method

Use

ZONE and the TIMSTAMP WITH TIME ZONE
column types.

HasDecFloatSupport

Returns true if the Firebird client interface library
includes support for DECFloatl6, DECFloat34
and extended precision NUMERIC and
DECIMAL column types.

HasExtendedTZSupport

Returns true if the Firebird client interface library
includes support for the extended format for
TIME/TIMESTAMP WITH TIME ZONE.

HasMasterIntf

Returns true if the Firebird 3 IMaster “interface”
is available.

GetlMaster

If the Firebird 3 IMaster “interface” is available
this returns a reference to the IMaster
“interface”.

Note this is typed as a TObject in order to avoid
having to make the IB unit dependent on the Firebird
3 API, and must be cast to IMaster before use.

GetFBLibrary

Returns an IFirebirdLIbrary interface for the
Firebird Library that provides the Firebird API.

SQLDecFloatEncode

Encodes a TBCD value into a Firebird data
buffer (IBX use)

SQLDecFloatDecode

Decodes a BCD value encode in a Firebird data
buffer (IBX use)

TimeZonelD2TimeZoneName

Translates a Time Zone ID into a Time Zone
Name, or formatted offset.

TimeZoneName2TimeZonelD

Translates a Time Zone Name or formatted
offset into a Time Zone ID.

LocalTimeToUTCTime

Converts a local time into UTC Time.

UTCTimeTolLocalTime

Converts a UTC Time into a local time.

GetEffectiveOffsetMins

Returns the effective time zone offset for the
timestamp and time zone.

Issue 1.11

19

Firebird Pascal API (fbintf) Guide

3.6 The Firebird Library Interface

IFirebirdLibrary = interface
function GetHandle: TLibHandle;
function GetLibraryName: string;
function GetLibraryFilePath: string;
function GetFirebirdAPI: IFirebirdAPI;

Method Use

GetHandle This returns the library handle returned by the OS
when the library was loaded.

GetLibraryName This is the name of the library e.g. libfbclient.2.0

GetLibraryFilePath This is the absolute file path and filename of the
DLL or shared object file containing the library.

Note: on unix this uses the “dlinfo” clib function. While
this is available on Linux, it is not supported by all
platforms. If not supported the method returns the same
as “GetLibraryName”.

GetFirebirdAPI This is the instance of the IFirebirdAPI interface for
the library.

3.7 Accessing the Firebird Provider Interface

In Firebird 3 and later, the Firebird Client exports the “IMaster” interface. This is not a Pascal
interface. However, it does provide a means of accessing the low level Firebird interface. It is
described in the Firebird documentation.

A type safe means of accessing this interface is not provided as part of IFirebirdAPI in order to
avoiding having to include the “Firebird” unit in the “IB” unit and the risk of naming conflicts that
couuld result. Instead, an interface that provides access to IMaster is provided by the “FBClientLib”
unit. This defines the following interface type:

IFBIMasterProvider = interface
{Firebird 3 API}
function GetIMasterIntf: Firebird.IMaster;

This interface can be coerced from IFirebirdAPI for example using:

20

Programming with the Firebird Pascal API

uses Firebird, FBClientLib;

if FirebirdAPI.HasMasterIntf and
(FirebirdAPI.QueryInterface(IFBIMasterProvider,MasterProvider) = S_OK) then
with MasterProvider.GetIMasterIntf.getConfigManager do
begin
writeln(OutFile, 'Firebird Bin Directory = ', getDirectory(DIR_BIN));
writeln(OutFile, 'Firebird Conf Directory = ', getDirectory(DIR_CONF));
end;

3.8 Multi-Threading

With the exception of Event Handling, the fbintf package does not attempt to provide any thread
synchronisation. However, from Firebird 2.5 onwards, the Firebird Client Library should be thread
safe and hence it can be possible to use the fbintf package in a multi-threaded application. The
following guidelines are provided:

* An lAttachment (see 4.12) or an IServiceManager (see 12.2.1) interface can be used from
different threads.

* An [Statement (see 6.12) should not be used from multiple threads without user provided
thread synchronisation. In particular, calling IResultSet.FetchNext from different threads
without synchronisation can lead to unpredictable behaviour.

* IServiceManager actions should not be simultaneously invoked from separate threads.

* |Blob (see 7.2) and lArray (see 8.2) should not be modified from separate threads without
user provided thread synchonisation.

« Different threads can use the same transaction. However, transaction start, commit and
rollback should not used by separate threads without user provided thread synchonisation.

Issue 1.11 21

Working with Databases

Working with Databases

All Database Connections are managed using the IAttachment interface. This interface is returned
by a call to the IFirebirdAPl.OpenDatabase or the IFirebirdAPl.CreateDatabase methods. In each
case, a Database Parameter Block (DPB) must be provided as a parameter to the call.

4.1 The Database Parameter Block (DPB)

The DPB is used to pass various parameters to an OpenDatabase or CreateDatabase method.
These include the User Name and Password, the default Character Set and the SQL Dialect.

Building a DPB is simple enough. The IFirebirdAPl.AllocateDPB method is used to allocate an
interface to an empty DPB (IDPB?) and this interface's Add method is used to add parameters to
the block:

IDPB = interface

function getCount: integer;

function Add(ParamType: byte): IDPBItem;

function getItems(index: integer): IDPBItem;

function Find(ParamType: byte): IDPBItem;

property Count: integer read getCount;

property Items[index: integer]: IDPBItem read getItems; default;
end;

Note that once a parameter has been added to the parameter block, an interface to it (IDPBItem) is returned.
This interface can be accessed later using the find method. It is also possible to enumerate the existing
parameters using the getCount method and Items property. For example,

23ee also Appendix A

Issue 1.11 23

Firebird Pascal API (fbintf) Guide

var MyDPB: IDPB;

begin
MyDPB := FirebirdAPI.AllocateDPB;
MyDPB.Add(isc_dpb_user_name).AsString := 'SYSDBA';

MyDPB.Add(isc_dpb_password).AsString := 'masterkey';
MyDPB.Add(isc_dpb_lc_ctype).AsString := 'UTF8';
MyDPB.Add(isc_dpb_set_db_SQL_dialect).AsByte := 3;

is a typical example of the use of IDPB to populate a DPB prior to attaching to the database.

Note that the parameter to the Add method is one of the DPB symbolic constants defined by the Firebird
API. The data type is dependent on the parameter.

The IDPBItem interface is defined as:

IDPBItem = interface(IParameterBlockItem) end;

It is defined by subclassing the IParameterBlockltem interface (see 13.2.2.3) Getter and setter
methods are defined for string, integer and byte parameters, together with corresponding
properties. The parameter type (e.g. isc_dpb_user_name) can be queried using the
getParamType method. The following provides an example of enumerating a DPB to print out
each parameter's value:

procedure TTestBase.PrintDPB(MyDPB: IDPB);
var i: integer;

begin
writeln('DPB');
writeln('Count = ', MyDPB.Count);
for i := @ to MyDPB.Count - 1 do
writeln(MyDPB[i].getParamType,' = ', MyDPB[i].AsString);
writeln;
end;

Note that all parameter types can be returned as a string value.
4.1.1 Reference

The following symbolic constants may be used in a DPB:

Constant Type Definition
isc_dpb_user_name String Login User Name
isc_dpb_password String Login Password
isc_dpb_Ic_ctype String Default Character Set Name
isc_dpb_sql_role_name String Login Role name
isc_dpb_sql_dialect Byte Default SQL Dialect (1 or 3)
isc_dpb_page_size Integer Database Page Size (create database only)

Other symbolic constants are available for special use (e.g. dfix type operations). See the
InterBase 6 APl Guide for more information.

24

Working with Databases

4.2 Creating a New Database

A new database is created using the IFirebirdAPI.CreateDatabase method. On a successful
completion, this creates a database and returns an 1Attachment Interface providing access to the
connection to the newly created database. This function comes in two variants. The first is similar
to OpenDatabase (see below) and uses a DPB to provide the database parameters.

function CreateDatabase(DatabaseName: AnsiString; DPB: IDPB;
RaiseExceptionOnError: boolean=true): IAttachment;

In this case, the DPB provides the login credentials for the user that is to become the database
owner. The connection Default Character set becomes that defined for the database. The
database page size DPB parameter (isc_dpb_page_size) is also recognised and used when
creating the database.

The DatabaseName is either a path to the local database filename, or a connect string in the form:
serverName:aliasOrPath

where “serverName” is the domain name for the Firebird Server (localhost is permitted) and the
“aliasOrPath” is either a valid database alias name defined in the server's “aliases.conf” file or the
full path to the database file on the server.

If RaiseExceptionOnError is false then any errors are silently ignored and a nil interface reference
is returned. Otherwise, if an error occurs then an exception is raised.

The second variant provides a means to create a database using the “Create Database” SQL
statement. This is:

function CreateDatabase(sql: AnsiString; aSQLDialect: integer;
RaiseExceptionOnError: boolean=true): IAttachment; overload;

In this case, the sql parameter must provide a “Create Database” SQL statement as described in
the Firebird Language Guide.

If the above is successful then the connect string is extracted from the SQL statement and may be
retrieved using “GetConnectString”. In the FPC version, the Username and Password, if any, given
on the create SQL statement are also extracted and used to populate a DPB for the connection.
This can be read using getDPB. This also allows reconnection (see 4.6). However, this is not
supported in the Delphi version.

4.3 Attaching to an Existing Database

You can attached to existing database using the IFirebirdAPI.OpenDatabase method. On
successful completion, this opens a connection to the database and returns an IAttachment
Interface providing access to it.

function OpenDatabase(DatabaseName: AnsiString; DPB: IDPB;
RaiseExceptionOnConnectError: boolean=true): IAttachment;

In this case, the DPB provides the login credentials for the user that is logging into the database.
The user must have the necessary access rights for access to the database.

The DatabaseName is as above and must identify an existing database.

Issue 1.11 25

Firebird Pascal API (fbintf) Guide

If RaiseExceptionOnError is false then any errors are silently ignored and a nil interface reference
is returned. Otherwise, if an error occurs then an exception is raised.

4.4 Controlling access to the DPB Password

The password added to a DPB is kept in memory and in clear. It can be accessed after a database
has been opened. If the |Attachment interface is passed to an untrusted user then this could be a
problem. To avoid this potential security hazard, the password should be invalidated after the
connection is opened e.g.

var MyAttachment: IAttachment;

begin
MyAttachment := IFirebirdAPI.OpenDatabase 'path to database', MyDPB);
MyDPB.Find(isc_dpb_password).AsString := 'XXXXXXXX';

4.5 Disconnecting

An IAttachment interface is returned for an active connection. This connection can be terminated at
any time by calling the IAttachment.Disconnect method. This terminates the connection but does
not invalidate the interface which can still be used to reconnect to the database.

Prior to a database being disconnected, all active transactions are closed using their default
completion.

The Disconnect function also includes a “Force” argument. If this is set to true then all active
transactions are closed with the Commit or Rollback Force argument set to true (see 5.9). Any
error returned when the database connection is closed is also silently ignored.

Use of the Force argument should be exceptional and used only when a normal disconnect fails
and the problem cannot be easily resolved. Sometimes it is the only way to exit a program.

4.6 Reconnecting

After a database connection has been terminated, the IAttachment.Connect method may be used
to reconnect the attachment to the same database. On successful completion, the connection has
been restored.

Note that if the password has been invalidated as discussed above in 4.4, then the connect will fail unless
the password is restored e.g.

MyAttachment.getDPB.Find(isc_dpb_password).AsString := 'masterkey';
MyAttachment.Connect;

If the connection was originally established when the database was created using a create
database SQL statement then the DPD populated from the username/password, if any, present in
the create database SQL statement, is used to reconnect.

4.7 Dropping a Database

The IAttachment.DropDatabase method can be used to drop an existing database, if the logged in
user has sufficient privilege to drop the database. After this method is called, the database file on
the server is removed, the connection is disconnected and any further calls to this attachment
interface instance are undefined. For example:

26

Working with Databases

MyAttachment.DropDatabase;
MyAttachment := nil; {ensure no further use}

Prior to a database being dropped, all active transactions are closed using their default completion.

4.8 Getting Database Information
The IAttachment interface also provides access various database statistics and other information
using the IAttachment.GetDBInformation method. This method takes a list of request items as its
parameter and returns an IDBInformation interface providing access to the requested information.
Three overloaded variants of GetDBInformation are provided which respectively are used:

* To pass a single request

* To pass multiple requests

* To pass multiple requests as an IDIRB request block. This is used when one or more of the
requests has a parameter,

Information is requested using one of the following DB Information constants. Either a single item
is requested, or a set of information items is requested:

isc_info_db_id Database File Name and site name
isc_info_allocation Number of database pages allocated
isc_info_base_level Database Version (level) number
isc_info_implementation Database Implementation Number
isc_info_no_reserve Is space reserved for backup records

isc_info_ods_minor_version ODS minor version number

isc_info_ods_version ODS version number

isc_info_page_size Number of bytes per page

isc_info_version Database implementation version no.

isc_info_current_memory Amount of server memory (in bytes) currently in use
isc_info_forced_writes Number specifying the mode in which database writes are

performed (O for asynchronous, 1 for synchronous)

isc_info_max_memory Maximum amount of memory (in bytes) used at one time since
the first process attached to the database

Issue 1.11 27

Firebird Pascal API (fbintf) Guide

isc_info_num_buffers

Number of memory buffers currently allocated

isc_info_sweep_interval

Number of transactions that are committed between “sweeps” to
remove database record versions that are no longer needed

isc_info_user_names

List of logged in users.

isc_info_fetches

Number of reads from the memory buffer cache

isc_info_marks

Number of writes to the memory buffer cache

isc_info_reads

Number of page reads

isc_info_writes

Number of page writes

isc_info_backout_count

Number of removals of a version of a record

isc_info_delete_count

Number of database deletes since the database was last
attached

isc_info_expunge_count

Number of removals of a record and all of its ancestors, for
records whose deletions have been committed

isc_info_insert_count

Number of inserts into the database since the database was last
attached

isc_info_purge_count

Number of removals of old versions of fully mature records
(records that are committed, so that older ancestor versions are
no longer needed)

isc_info_read_idx_count

Number of reads done via an index since the dataase was last
attached

isc_info_read_seq_count

Number of sequential sequential table scans (row reads) done on
each table since the database was last attached

isc_info_update_count

Number of database updates since the database was last
attached

isc_info_db_SQL_Dialect

Get Database SQL Dialect

isc_info_active_tran_count

Number of currently active transactions.

isc_info_creation_date

Date and time when database was created.

fb_info_page_contents

The requested page number is passed as an integer parameter.

28

Working with Databases

Returns selected page contents as a string with code page
CP_NONE.

The InterBase 6.0 APl Guide provides more information on each of the above.
isc_info_active_tran_count, isc_info_creation_date and fb_info_page contents are described in the
Firebird documentation files.

4.8.1 Using the IDIRB Interface

fb_info_page contents has a single integer parameter — the page number- and is the only
Database Information requests that requires a parameter. In order to support this, a Database
Information Request Block interface (IDIRB) is provided. This is very similar to the Database
Parameter Block. It is initialised with a call to IAttachment.AllocateDIRB, and the Add method is
used to add IDIRBItems. For example:

var DBRequest: IDIRB;

begin
DBRequest := Attachment.AllocateDIRB;
DBRequest.Add(isc_info_page_size);
DBRequest.Add(fb_info_page_contents).AsInteger := 100;

Allocates a IDIRB and requests two (unconnected) items: a request for the page size and for the
contents of page number 100;

An overloaded version of IAttachment.GetDBInformation is used to pass the request to Firebird
and returns an IDBInformation containing the response.

4.8.2 The IDBInformation Interface

IDBInformation is a simple interface providing access to the buffer containing the information
requested:

IDBInformation = interface
function GetCount: integer;
function GetItem(index: integer): IDBInfoItem;
function Find(ItemType: byte): IDBInfoltem;
property Count: integer read GetCount;
property Items[index: integer]: IDBInfoItem read getItem; default;
end;

This interface can be used to enumerate the individual information items requested. Each item is
returns as an IDBInfoltem:

Issue 1.11 29

Firebird Pascal API (fbintf) Guide

IDBInfoItem = interface
function getItemType: byte;
function getSize: integer;
procedure getRawBytes(var Buffer);
function getAsString: AnsiString;
function getAsInteger: int64;
procedure DecodeIDCluster(var ConnectionType: integer;
var DBFileName, DBSiteName: AnsiString);
function getAsBytes: ThyteArray;
function getAsDateTime: TDateTime;
procedure DecodeVersionString(var Version: byte; var VersionString: AnsiString);
function getOperationCounts: TDBOperationCounts;
procedure DecodeUserNames(UserNames: TStrings);

{user names only}

function GetCount: integer;

function GetItem(index: integer): IDBInfoItem;

function Find(ItemType: byte): IDBInfoItem;

property AsInteger: int64 read getAsInteger;

property AsString: AnsiString read GetAsString;

property Count: integer read GetCount;

property Items[index: integer]: IDBInfoItem read getItem; default;
end;

Each DB Information item can be a single value or a set of values that can itself be enumerated.
Getter methods are provided for each data type that can be returned. Including the following
special cases:

» DecodelDCluster is used to decode information returned for information type
isc_info_db_id.

» DecodeVersionString is used to decode information returned for isc_info_base_level
» getOperationCounts is used for returned operation counts (isc_info_backout_count onwrds)
* DecodeUserNames may be used for isc_info_user_names.

* GetAsBytes is used for isc_info_base_level and isc_info_implementation.

4.9 Getting Information about the Attachment

The IAttachment interface also provides access to information about the attachment itself using the
functions:

function GetConnectString: AnsiString;
function GetRemoteProtocol: AnsiString;
function GetAuthenticationMethod: AnsiString;
function GetSecurityDatabase: AnsiString;
function GetODSMajorVersion: integer;
function GetODSMinorVersion: integer;
function GetSQLDialect: integer;

function HasDefaultCharSet: boolean;

function GetDefaultCharSetID: integer;
procedure getFBVersion(version: TStrings);

These may be used to determine:
* The connect string used to connect to the remote database.
* The protocol used (e.g. TCP). An empty string is returned if the embedded server is used.

* The authentication method (e.g. Srp, Win_Sspi, Legacy_Auth). Note that prior to Firebird 3,
this always returns Legacy_Auth.

30

Working with Databases

* The Security Database (returns 'Default’ or 'Other");

* The Major and Minor ODS versions of the remote database.

e The SQL Dialect use for the connection

« Whether or not a default character set was defined for the connection and, if so, what it is.
¢ The Client/Server version information.

The Client/Server version information is returned as a list of strings and is the information returned
by the Firebird APl isc_version function as described in [1]. For example, with Firebird 3.0.3, the
following is returned:

Firebird/Linux/AMD/Intel/x64 (access method), version "LI-V3.0.3.32900 Firebird 3.0"
Firebird/Linux/AMD/Intel/x64 (remote server), version "LI-V3.0.3.32900 Firebird
3.0/tcp (zeus)/P15:"

Firebird/Linux/AMD/Intel/x64 (remote interface), version "LI-V3.0.3.32900 Firebird
3.0/tcp (zeus)/P15:"

on disk structure version 12.0

Note: From Firebird 3 onwards, if Wire Compression is in use then a trailing “Z” is added to lines 2 and 3.
Similarly, if Wire Encryption is in use then a trailing “C: is added. If both then a trailing “CZ” is added.

4.10 Database Activity Monitor

A simple means of polling for database API activity is provided by the IAttachment.HasActivity
method. This returns true if any activity has taken place over this connection since the last time the
method was called, and false otherwise.

This may be used to automatically disconnect idle connections after some period has elapsed.

4.11 Attaching to a Database using the Embedded Server

When running on a Unix platform, fbint sets up the local environment to avoid file permissions
issues with the Firebird lock and temporary directories. That is, it will create on initialisation, in the
default temporary file directory (typically /tmp under Linux), a directory called
“Firebird_<username>, where <username> is the current login user name and, unless they are
already defined, set the FIREBIRD_TMP and FIREBIRD_LOCK environment variables to point to
this directory.

If your database path consists only of a path to a file on your local system and the embedded
server is available then Firebird will attempt to attach to the database without connecting to the
server. For this to be successful:

e Under Linux, the user name and password must not be present in the DPB.

* Under Windows, a user name and password should be present in the DPB. However, these
should be set to the default of “SYSDBA “and “masterkey” respectively.

Issue 1.11 31

Firebird Pascal API (fbintf) Guide

4.12 Reference

32

IAttachment = interface

function getFirebirdAPI: IFirebirdAPI;

function getDPB: IDPB;

function AllocateBPB: IBPB;

function AllocateDIRB: IDIRB;

procedure Connect;

procedure Disconnect(Force: boolean=false);

function IsConnected: boolean;

procedure DropDatabase;

function StartTransaction(TPB: array of byte;
DefaultCompletion: TTransactionCompletion=taCommit;
aName: AnsiString='"'): ITransaction; overload;

function StartTransaction(TPB: ITPB;
DefaultCompletion: TTransactionCompletion=taCommit;
aName: AnsiString='"'): ITransaction; overload;

procedure ExecImmediate(transaction: ITransaction; sql: AnsiString;

SQLDialect: integer); overload;
procedure ExecImmediate(TPB: array of byte; sql: AnsiString;

SQLDialect: integer); overload;
procedure ExecImmediate(transaction: ITransaction; sql: AnsiString); overload;
procedure ExecImmediate(TPB: array of byte; sql: AnsiString); overload;
function ExecuteSQL(TPB: array of byte; sql: AnsiString; SQLDialect: integer;

params: array of const): IResults; overload;
function ExecuteSQL(transaction: ITransaction; sql: AnsiString;
SQLDialect: integer; params: array of const): IResults; overload;
function ExecuteSQL(TPB: array of byte; sql: AnsiString;
params: array of const): IResults; overload;
function ExecuteSQL(transaction: ITransaction; sql: AnsiString;
params: array of const): IResults; overload;
function OpenCursor(transaction: ITransaction; sql: AnsiString; a
SQLDialect: integer;
Scrollable: boolean=false): IResultSet; overload;
function OpenCursor(transaction: ITransaction; sql: AnsiString;
aSQLDialect: integer;
params: array of const): IResultSet; overload;
function OpenCursor(transaction: ITransaction; sql: AnsiString;
Scrollable: boolean=false): IResultSet; overload;
function OpenCursor(transaction: ITransaction; sql: AnsiString;
Scrollable: boolean=false;
params: array of const): IResultSet; overload;
function OpenCursor(transaction: ITransaction; sql: AnsiString;
aSQLDialect: integer; Scrollable: boolean;
params: array of const): IResultSet; overload;
function OpenCursorAtStart(transaction: ITransaction; sql: AnsiString;
asSQLDialect: integer;
Scrollable: boolean=false): IResultSet; overload;
function OpenCursorAtStart(transaction: ITransaction; sql: AnsiString;
aSQLDialect: integer;
params: array of const): IResultSet; overload;
function OpenCursorAtStart(transaction: ITransaction; sql: AnsiString;
aSQLDialect: integer; Scrollable: boolean;
params: array of const): IResultSet; overload;
function OpenCursorAtStart(transaction: ITransaction; sql: AnsiString;
Scrollable: boolean=false): IResultSet; overload;
function OpenCursorAtStart(transaction: ITransaction; sql: AnsiString;
params: array of const): IResultSet; overload;
function OpenCursorAtStart(transaction: ITransaction; sql: AnsiString;
Scrollable: boolean;
params: array of const): IResultSet; overload;
function OpenCursorAtStart(sql: AnsiString; Scrollable: boolean=false):
IResultSet; overload;
function OpenCursorAtStart(sql: AnsiString; Scrollable: boolean;
params: array of const): IResultSet; overload;
function OpenCursorAtStart(sql: AnsiString;

function

function

function

function

{Events}
function
function

Working with Databases

params: array of const): IResultSet; overload;
Prepare(transaction: ITransaction; sql: AnsiString;
asSQLDialect: integer;
CursorName: AnsiString='"'): IStatement; overload;
Prepare(transaction: ITransaction; sql: AnsiString;
CursorName: AnsiString='"'): IStatement; overload;
PreparewWithNamedParameters(transaction: ITransaction; sql: AnsiString;
aSQLDialect: integer; GenerateParamNames: boolean=false;
CaseSensitiveParams: boolean = false;
CursorName: AnsiString='"'): IStatement; overload;
PreparewWithNamedParameters(transaction: ITransaction; sql: AnsiString;
GenerateParamNames: boolean=false;
CaseSensitiveParams: boolean = false;
CursorName: AnsiString='"'): IStatement; overload;

GetEventHandler (Events: TStrings): IEvents; overload;
GetEventHandler (Event: AnsiString): IEvents; overload;

{Blob - may use to open existing Blobs. However, ISQLData.AsBlob is
preferred}

function

function

function

function

function

function

CreateBlob(transaction: ITransaction; RelationName,
ColumnName: AnsiString; BPB: IBPB=nil): IBlob; overload;
CreateBlob(transaction: ITransaction;
BlobMetaData: IBlobMetaData; BPB: IBPB=nil): IBlob; overload;
CreateBlob(transaction: ITransaction; SubType: integer;
CharSetID: cardinal=0; BPB: IBPB=nil): IBlob; overload;
OpenBlob(transaction: ITransaction; RelationName,
ColumnName: AnsiString; BlobID: TISC_QUAD; BPB: IBPB=nil): IBlob;
OpenBlob(transaction: ITransaction; BlobMetaData: IBlobMetaData;
BlobID: TISC_QUAD; BPB: IBPB=nil): IBlob; overload;
GetInlineBlobLimit: integer;

procedure SetInlineBlobLimit(1limit: integer);

{Array -

may use to open existing arrays. However, ISQLData.AsArray is

preferred}

function

function

function

function

function

OpenArray(transaction: ITransaction; RelationName,
ColumnName: AnsiString; ArrayID: TISC_QUAD): IArray;
OpenArray(transaction: ITransaction; ArrayMetaData: IarrayMetaData;
ArrayID: TISC_QUAD): IArray; overload;
CreateArray(transaction: ITransaction; RelationName,
ColumnName: AnsiString): IArray; over load
CreateArray(transaction: ITransaction;
ArrayMetaData: IArrayMetaData): IArray; overload;
CreateArrayMetaData(SQLType: cardinal; Scale: integer; size: cardinal;
charSetID: cardinal; dimensions: cardinal;
bounds: TArrayBounds): IArrayMetaData;

{Database Information}

function
function
function

function
function
function
function

function
function

Issue 1.11

GetSQLDialect: integer;
GetAttachmentID: integer;
GetBlobMetaData(Transaction: ITransaction; tableName,

columnName: AnsiString): IBlobMetaData;
GetArrayMetaData(Transaction: ITransaction; tableName,

columnName: AnsiString): IArrayMetaData;
GetDBInformation(Requests: array of byte)

IDBInformation; overload;

GetDBInformation(Request: byte): IDBInformation; overload;
GetDBInformation(Requests: IDIRB): IDBInformation; overload;
GetConnectString: AnsiString;
GetRemoteProtocol: AnsiString;

4

33

Firebird Pascal API (fbintf) Guide

34

function GetAuthenticationMethod: AnsiString;

function GetODSMajorVersion: integer;

function GetODSMinorVersion: integer;

procedure getFBVersion(version: TStrings);

function HasActivity: boolean;

function HasDecFloatSupport: boolean;

function HasBatchMode: boolean;

function HasScollableCursors: boolean;

function HasTable(aTableName: AnsiString): boolean; {case sensitive}
function HasFunction(aFunctionName: AnsiString): boolean; {case sensitive}
function HasProcedure(aProcName: AnsiString): boolean; {case sensitive}

{Character Sets}
function GetCharSetID: integer; {connection character set}
function HasDefaultCharSet: boolean;
function GetDefaultCharSetID: integer;
function GetCharsetName(CharSetID: integer): AnsiString;
function CharSetID2CodePage(CharSetID: integer;
var CodePage: TSystemCodePage): boolean;
function CodePage2CharSetID(CodePage: TSystemCodePage;
var CharSetID: integer): boolean;
function CharSetName2CharSetID(CharSetName: AnsiString;
var CharSetID: integer): boolean;
function CharSetWidth(CharSetID: integer; var Width: integer): boolean;
procedure RegisterCharSet(CharSetName: AnsiString; CodePage: TSystemCodePage;
AllowReverseLookup:boolean; out CharSetID: integer);

{Time Zone Database}

function GetTimeZoneServices: ITimeZoneServices;
function HasTimeZoneSupport: boolean;

Method Use
getFirebirdAPI Returns the IFirebirdAPI that provided the
IAttachment
getDPB Returns a reference to the DPB used to connect

to the database.

AllocateBPB Allocates an empty Blob Parameter Block (BPB)
(See 7.6).
AllocateDIRB Allocates an empty Database Information

Request Buffer (see 4.8.1)

Connect Reconnect to the database following a
Disconnect (see 4.6)

Disconnect Disconnect from the database. If “force” is true
then errors are ignored (see 4.5).

IsConnected Returns true if database connection is active.

DropDatabase Requests that the current database is closed

Working with Databases

Method Use
and deleted from the server (see 4.7).
StartTransaction Starts a new transaction on the database (see

5.2).

Execlmmediate

Execute an SQL Statement with no input or
output. (see 6.2)

ExecuteSQL Executes an non-Select SQL Statement with
input parameters and optional output (see
6.4.1).

OpenCursor Execute an SQL Query Statement and return
the results set (see 6.9).

OpenCursorAtStart Execute an SQL Query Statement and return
the results set with the cursor positioned at the
first row, if any (see 6.9).

Prepare Prepare an SQL Statement using positional

parameters (see 6.4 and 6.8)

PrepareWithNamedParameters

Prepare an SQL Statement using the named
parameters syntax (see 6.4 and 6.8)

GetEventHandler

Returns an Event Handler interface for handling
events on this database (see 11.1)

CreateBlob

Returns an interface to an empty Blob (see 7.4).

OpenBlob

Returns an interface to an existing blob (See
7.3).

GetlnlineBlobLimit

Returns the current inline blob limit (see 7.7).
Defaults to 8192.

SetInlineBlobLimit

Used to modify the current inline blob limit.

CreateArray Returns an interface to an empty Array (see 8.4)
CreateArrayMetaData Creates an array metadata structure from the
provided information. (see 8.1)
OpenArray Returns an interface to an existing array (see
Issue 1.11

35

Firebird Pascal API (fbintf) Guide

36

Method

Use

8.3).

GetSQLDialect

Returns the connection's default SQL Dialect.

Note: this is cached when the connection is opened
and may become stale after the connection is
disconnected.

GetAttachmentID

Returns the Firebird assigned attachment id.

GetBlobMetaData Returns the metadata for a Blob Column (See
7.1).
GetArrayMetaData Returns the metadata for an Array Column (see

8.1).

GetDBInformation

Get Database Information (see 4.8.2).

GetConnectString

Returns the connect string used to connect to or
create the database.

GetRemoteProtocol

Returns a text string indicating the protocol, if
any, used to connect to the remote database.
Empty is an embedded server is used.
(Available for ODS >=11.1)

Note: this is cached when the connection is opened
and may become stale after the connection is
disconnected.

GetODSMajorVersion

Returns the remote database ODS major
version number.

Note: this is cached when the connection is opened
and may become stale after the connection is
disconnected.

GetODSMinorVersion

Returns the remote database ODS minor
version number.

Note: this is cached when the connection is opened
and may become stale after the connection is
disconnected.

getFBVersion

See 4.9.

HasActivity

Returns true if the database connection has
been used since the last call to the method (see

Working with Databases

Method Use

4.10).

HasDecFloatSupport Returns true if both the client and server support
the DecFloat and extended precision
NUMERIC/DECIMAL data types.

HasBatchMode Returns true if the underlying Firebird API and
Server supports batch mode operations (see
6.10).

HasDefaultCharSet Returns true if a default character set was

specified for the connection.

GetCharSetID

Returns the integer id for the connection
character set.

GetDefaultCharSetID

Returns the connection default character set ID,
if any.
Note: this is cached when the connection is opened

and may become stale after the connection is
disconnected.

GetCharsetName

Lookup the name of the Character set that
corresponds to a Firebird Character Set ID.

CharSetID2CodePage

Lookup the Code Page that corresponds to a
Firebird Character Set ID.

CodePage2CharSetID

Lookup the Firebird Character Set ID that
corresponds to a Code Page.

CharSetName2CharSetID

Lookup the Firebird Character Set ID that
corresponds to a Character Set Name.

CharSetWidth Lookup the Character Set width that
corresponds to a Firebird Character Set ID.
RegisterCharSet Register a user defined character set with the

API. This character set must already have been
added to the database's
RDB$CHARACTER_SETS table. The purpose
of this function is to set up the mapping between
the character set and the corresponding System
Code Page.

Issue 1.11

37

Firebird Pascal API (fbintf) Guide

Method Use
HasTimeZoneSupport Returns true if both client and server support the
TIME/TIMESTAMP WITH TIME ZONE data
types.
HasScollableCursors Returns true if the Firebird client interface

supports scrollable cursors.

HasTable Returns true if the named table is present in the
database.

Note: case sensitive. If the table name was declared
without being enclosed in double quotes then it is
always saved as upper case only.

HasFunction Returns true if the named function is present in
the database .

Note: case sensitive. If the function name was
declared without being enclosed in double quotes
then it is always saved as upper case only.

HasProcedure Returns true if the named procedure is present.
in the database

Note: case sensitive. If the procedue name was
declared without being enclosed in double quotes
then it is always saved as upper case only.

GetTimeZoneServices If HasTimeZoneSupport returns true then this
returns an instance of the ITimeZoneServices
interface for the current attachment. Otherwise
returns nil.

4.13 The ITimeZoneServices Interface

This interface is an extension to the IAttachment interface and is provided to support the
TIME/TIMESTAMP WITH TIME ZONE data types available from Firebird 4 onwards. See
Appendix C for more information about how IBX handles these data types.

The interface is defined as:

ITimeZoneServices = interface
['{163821f5-ebef-42b9-ac60-8ac4b5c09954} "]

{utility functions}
function TimeZoneID2TimeZoneName(aTimeZoneID: TFBTimeZoneID): AnsiString;
function TimeZoneName2TimeZoneID(aTimeZone: AnsiString): TFBTimeZonelD;
function LocalTimeToGMT(aLocalTime: TDateTime;

aTimeZone: AnsiString): TDateTime; overload;

38

Working with Databases

function LocalTimeToGMT(aLocalTime: TDateTime;

aTimeZoneID: TFBTimeZoneID): TDateTime; overload;
function GMTToLocalTime(aGMTTime: TDateTime;

aTimeZone: AnsiString): TDateTime; overload;
function GMTToLocalTime(aGMTTime: TDateTime;

aTimeZoneID: TFBTimeZoneID): TDateTime; overload;
function GetEffectiveOffsetMins(aLocalTime: TDateTime;

aTimeZone: AnsiString): integer; overload;
function GetEffectiveOffsetMins(aLocalTime: TDateTime;

aTimeZoneID: TFBTimeZoneID): integer; overload;

{Time Zone DB Information}

function UsingRemoteTZDB: boolean;
procedure SetUselLocalTZDB(useLocalTZDB: boolean);
function GetLocalTimeZoneName: AnsiString;
function GetLocalTimeZoneID: TFBTimeZonelD;
procedure GetTimeZoneInfo(aTimeZone: AnsiString; OnDate: TDateTime;
var ZoneOffset, DSTOffset, EffectiveOffset: integer);

{Configurable Options}

function GetTimeTZDate: TDateTime;

procedure SetTimeTZDate(aDate: TDateTime);

function GetTZTextOption: TTZTextOptions;

procedure SetTZTextOption(aOptionvalue: TTZTextOptions);

end;
Method Use

TimeZonelD2TimeZoneName | Translates a Firebird time zone integer id to a
time zone name or offset from GMT as
appropriate.

TimeZoneName2TimeZonelD |Translates a time zone name or offset from
GMT to a Firebird time zone integer id.

LocalTimeToGMT Translates a timestamp from Local Time to
GMT.

GMTToLocalTime Translates a timestamp from GMT to Local
Time.

GetEffectiveOffsetMins Returns the effective offset from GMT for a
timestamp in a specified time zone.

UsingRemoteTZDB Returns true if the IBX client is using the server
side time zone database (default).

SetUselLocalTzDB Used to toggle between use of a local time zone
database if available, or use of the server side
time zone database.

GetLocalTimeZoneName Returns the local time zone name in tzdata
format (e.g. 'Europe/London") if known, or the

Issue 1.11

39

Firebird Pascal API (fbintf) Guide

40

Method

Use

local time zone three character id (e.g. EST) if
not. (OS dependent)

GetLocalTimeZonelD

Returns the Firebird time zone integer id for the
result of GetLocalTimeZoneName.

Note: if this is derived from the local time zone three
character id then the result may be unpredictable as
these are not unique time zone identifiers.

GetTimeZonelnfo

Look up the server side time zone database
entry for a given time zone name.

GetTimeTZDate The date currently used to translate TIME WITH
TIME ZONE values to and from GMT.
SetTimeTZDate Sets the date wused to translate TIME WITH
TIME ZONE values to and from GMT.
GetTZTextOption Returns the current TIME ZONE format used for
rendering a time zone in plain text.
SetTZTextOption Sets the TIME ZONE format used for rendering

a time zone in plain text.

* tzOffset: Time Zone Rendered as an offset
to GMT

* tzGMT: No Time Zone. Time part is always
rendered in GMT

* tzOriginallD: Time Zone shown as originally
entered

Working with Transactions

Working with Transactions

Firebird is a transaction orientated database with all SQL activity taking place within the context of
a transaction. Transactions can be isolated from each other and used to determine when changes
are committed (i.e made available to concurrent connections). It is also possible to rollback a
transaction (i.e. to discard all changes made under the transaction).

A transaction can be started on a single transaction or, simultaneously on multiple databases in to
co-ordinate updates across more than one database.

The ITransaction interface provides access to a Firebird transaction.

5.1 The Transaction Parameter Block (TPB)

The Transaction Parameter Block is used to pass various parameters to a StartTransaction
method. These include transaction isolation requirements, action on record locks and access

types.

Creating a TPB is simple enough: the IFirebirdAPI.AllocateTPB method is used to allocate an
interface to an empty TPB (ITPB) and this interface’'s Add method is used to add parameters to the
TPB.

ITPB = interface
function getCount: integer;
function Add(ParamType: byte): ITPBItem;
function getItems(index: integer): ITPBItem;
function Find(ParamType: byte): ITPBItem;
function AsText: AnsiString;
property Count: integer read getCount;
property Items[index: integer]: ITPBItem read getItems; default;
end;

This interface follows the pattern established for the DPB (see 13.2.2.3), with the Add method used

to add a new item, a Find method to locate an existing item and the means provided to enumerate
a TPB. The AsText function can be used to return the TPB formatted as a string.

Issue 1.11 41

Firebird Pascal API (fbintf) Guide

The ITPBItem interface is defined as:

ITPBItem = interface(IParameterBlockItem) end;

The common transaction parameters do not have any values associated with the, and a typical
example of allocating and populating a TPB is:

var MyTPB: ITPB;
begin

MyTPB := IFirebird.AllocateTPB;
MyTPB.Add(isc_tpb_write);
MyTPB.Add(isc_tpb_nowait);
MyTPB.Add(isc_tpb_concurrency);

Note that because few TPB parameters take values, the StartTransaction method discussed below has a
variation that only requires a set of TPB constants rather than an ITPB. The TPB is then built automatically

from the set of constants.

Common TPB constants are:

Constant Interpretation
isc_tpb_read Read Only Transaction
isc_tpb_write Read/Write Transaction

isc_tpb_consistency

Table-locking transaction model

isc_tpb_concurrency

High throughput, high concurrency transaction with acceptable
consistency; use of this parameter takes full advantage of the
Firebird multi-generational transaction model [Default]

isc_tpb_wait

Lock resolution specifies that the transaction is to wait until locked
resources are released before retrying an operation [Default]

isc_tpb_nowait

Lock resolution specifies that the transaction is not to wait for locks to
be released, but instead, a lock conflict error should be returned
immediately

isc_tpb_read_committed

High throughput, high concurrency transaction that can read changes
committed by other concurrent transactions. Use of this parameter
takes full advantage of the Firebird multi-generational transaction
model.

isc_tpb_lock read

Locks the table given by the parameter value (string: name of table)
for write but permits read by other transactions.

isc_tpb_lock write

Locks the table given by the parameter value (string: name of table)
for write but permits read by read committed and concurrency
transations

42

Working with Transactions

For additional constants and a more detailed interpretation of the above, the reader should refer to
the InterBase 6.0 API Guide.

5.2 Starting a Transaction

The IAttachment.StartTransaction method is used to start a transaction on a single database. It
returns a reference to the ITransaction interface for the newly started transaction. Two variants of
this method are available:

function StartTransaction(TPB: array of byte;
DefaultCompletion: TTransactionCompletion=taCommit;
aName: AnsiString='"'): ITransaction; overload;
function StartTransaction(TPB: ITPB;
DefaultCompletion: TTransactionCompletion=taCommit;
aName: AnsiString='"'): ITransaction; overload;

The first variant may be used when none of the required transaction parameters takes a value. In
this case, the TPB is expressed as an array of symbolic constants. The second variant requires
that a TPB is built by the caller and provided as a method parameter.

In both cases, the default transaction completion (TARollback, TACommit) may be provided
(default is taCommit). This is interpreted such that if the interface goes out of scope (i.e. is
automatically freed) before an explicit commit or rollback, then the transaction is completed using
the specific default completion.

See 5.4 for a description of the Transaction Name.

For example:

MyTransaction := MyAttachment.StartTransaction([isc_tpb_write,
isc_tpb_nowait, isc_tpb_concurrency], taCommit);

Note: Under Delphi, interfaces are disposed of when the containing block is exited while under FPC, an
interface is disposed of as soon as it becomes inaccessible. For example, when the variable referencing the
interface is set to “nil”. This difference can be significant if your program relies on default transaction
commit/rollback as this may occur at different points in the execution sequence depending on whether you
are using FPC or Delphi.

5.3 Starting a Transaction on Multiple Databases

The IFirebirdAPI.StartTranscation method is used to start a transaction on multiple databases. This
also has two variants:

function StartTransaction(Attachments: array of IAttachment;
TPB: array of byte; DefaultCompletion: TTransactionCompletion=taCommit;
aName: AnsiString='"'): ITransaction; overload;
function StartTransaction(Attachments: array of IAttachment;
TPB: ITPB; DefaultCompletion: TTransactionCompletion=taCommit;
aName: AnsiString='"'): ITransaction; overload;

The difference between these variants and those for a single database are that, for a single
database, the database is implicit in the |1Attachment, while for the multiple database case, the
databases have to be provided as an array.

Note that if the array contains only a single attachment, this is treated identically to the single database
attachment variant.

Issue 1.11 43

Firebird Pascal API (fbintf) Guide

5.4 Transaction Names

The idea of a Transaction Name was added in release 1.4.0 and to support journaling (see chapter
14). A Transaction Name may be optionally given when a transaction is started and has only local
significance. It allows the user to give a meaningful hame to each transaction which is then
recorded in the journal this making it easier to relate journal entries to transactions.

5.5 Committing a Transaction

A transaction is committed using the ITransaction.Commit or ITransaction.CommitRetaining
methods:

procedure Commit(Force: boolean=false);
procedure CommitRetaining;

In the first case, the transaction ceases to be active when the call completes while, in the second
case, the transaction remains active and further actions may take place in the context of the same
transaction.

If the “Force” parameter is true then the errors are silently ignored (see 5.9).

Prior to a transaction being committed, all active Statements using the transaction are closed.

5.6 Two Phase Commit

The two phase commit procedure is used when a transaction has performed updates across
multiple databases. It is used to ensure that if a problem occurs during the commit process an
administrator can nevertheless perform a deterministic error recovery process ensuring that the
transaction is committed on all databases.

The ITransaction.PrepareForCommit method is used to initiate the two phase commit process.
Once this returns, all databases are guaranteed to be in the same state and the commit method
may now be called to commit the transaction across all databases. For example:

MyTransaction.PrepareForCommit;
MyTransaction.Commit;

5.7 Transaction Rollback

A transaction is rolled back using the ITransaction.Rollback or ITransaction.RollbackRetaining
methods:

procedure Rollback(Force: boolean=false);
procedure RollbackRetaining;

The semantics are the same as for the commit variants except that the database state is rolled
back to the point at which the transaction was started or the last commitRetaining.

Prior to a transaction being rolled back, all active Statements using the transaction are closed.
5.8 Restarting a Transaction
After a transaction has been committed or rolled back, it is possible to restart the transaction using

the ITransaction.Start method:

44

Working with Transactions

procedure Start(DefaultCompletion: TTransactionCompletion=taCommit);
This restarts the transaction with the same TPB.

Note that the default completion may be changed at this point.

5.9 Forcibly Completing a Transaction

Both of the Commit and Rollback functions include a “Force” argument. If this is set to true then
any error returned when the transaction commit or rollback is invoked, is silently ignored and the
transaction handle released. The transaction may then be placed in limbo where it remains until
either it is removed during database garbage collection or the outcome is resolved by a Database
Administration using the gfix utility or the services API.

Calling Commit or Rollback with Force set to true should be exceptional and only used when it is
the only way to complete a program or some action.

5.10 Transaction Activity Monitor

A simple means of polling for transaction API activity is provided by the ITransaction.HasActivity
method. This returns true if any activity has taken place using this transaction since the last time
the method was called, and false otherwise. Activity includes any SQL statement operating in the
transaction context.

This may be used to automatically complete idle transactions after some period has elapsed.

5.11 Transaction Information

Firebird can provide various transaction information items. These are requested using one of the
isc_info_tra_?7? constants and return a transaction information block. (e.g. isc_info_tra_id request
the current transaction id).

An ITrinformation interface is returned as the result of a ITransaction. GetTrInformation request.

The isc_info_tra constants are described in the Firebird documentation (API Guide).

Issue 1.11 45

Firebird Pascal API (fbintf) Guide

ITrInfoItem = interface

['{41455ela-f84e-4e26-aff0-1a78e8b69cfe}']

function getItemType: byte;

function getSize: integer;

function getAsString: AnsiString;

function getAsInteger: int64;

procedure DecodeTralsolation(var IsolationType, RecVersion: byte);
end;

{ ITrInformation }

ITrInformation = interface

['{e6ea4ab2-clal-44ba-9609-c8bcc7cha7b2}']

function GetCount: integer;

function GetItem(index: integer): ITrInfoItem;

function Find(ItemType: byte): ITrInfoItem;

procedure PrintBuf; {can be used to print buffer in hex for debugging}

property Count: integer read GetCount;

property Items[index: integer]: ITrInfolItem read getItem; default;
end;

5.12 Reference

ITransaction = interface
function getTPB: ITPB;
procedure Start(DefaultCompletion: TTransactionCompletion=taCommit);
function GetInTransaction: boolean;
function GetIsReadOnly: boolean;
function GetTransactionID: integer;
function GetJournalingActive(attachment: IAttachment): boolean;
procedure PrepareForCommit; {Two phase commit - stage 1}
procedure Commit(Force: boolean=false);
procedure CommitRetaining;
function HasActivity: boolean;
procedure Rollback(Force: boolean=false);
procedure RollbackRetaining;
function GetAttachmentCount: integer;
function GetAttachment(index: integer): IAttachment;
function GetTrInformation(Requests: array of byte): ITrInformation; overload;
function GetTrInformation(Request: byte): ITrInformation; overload;
function GetTransactionName: AnsiString;
procedure SetTransactionName(aValue: AnsiString);
property InTransaction: boolean read GetInTransaction;
property TransactionName: AnsiString read GetTransactionName
write SetTransactionName;

end;
Method Use
getTPB Returns a reference to the TPB used to start the
transaction.
Start Restart a transaction (see 5.8)
GetInTransaction Returns true if the transaction is active
GetlsReadOnly Returns true if this is a read only transaction

46

Working with Transactions

Method

Use

GetTransactionID

Returns the Firebird assigned transaction id.

PrepareForCommit

Start of two phase commit process for multiple
databases (see 5.6)

Commit

Commit and terminate the transaction (see 5.6)

CommitRetaining

Commit and leave the transaction active (see
5.6).

HasActivity Returns true if transaction acitivity has taken
place since the last call to the method (see
5.10)

Rollback Rollback and terminate the transaction (see

5.7).

RollbackRetaining

Rollback and leave the transaction active (see
5.7).

GetAttachmentCount Returns the number of database attachments
over which the transaction is active.
GetAttachment Return a selected database attachment.

GetTrInformation

See 5.11.

GetTransactionName

Returns the Transaction Name, if any (see 5.4)

SetTransactionName

Replaces the current Transaction Name with
that provided.

Issue 1.11

47

Working with Dynamic SQL

Working with Dynamic SQL

Firebird is an SQL Database. Data held within the database is access and modified using SQL
Data Manipulation Language (DML) statements and the database metadata (e.g. table definitions)
managed using the SQL Data Definition Language (DDL).

The Firebird Client APl uses the Dynamic SQL variant of the Firebird SQL implementation for all
database queries and data modifications. Dynamic SQL is used for statements that are built and
executed dynamically at run time rather than being compiled into a program.

This section describes how SQL Statements are used with the Firebird Pascal API.

6.1 Dynamic SQL and the Firebird Pascal API

The SQL Statement syntax is described fully in the Firebird Language Guide and this document
should be consulted for all SQL reference. However, this API also provides an extended syntax for
statement parameter definition.

It is also worth noting that there are two SQL dialects supported. Dialect 1 is a more limited dialect
for legacy applications, while dialect 3 is the more up-to-date one recommended for all new
applications. One of the more notable differences between the dialects is that dialect 3 supports
SQL Identifiers that are reserved words or case sensitive by placing them within double quotes.
6.1.1 Named Parameters

Firebird Dynamic SQL only supports positional parameters in SQL statements. For example:

Select * from MyTable Where MyKeyName like ?

Where the question mark is a placeholder for a positional parameter. The parameters are
accessed by a zero based index number in the order they occur in the statement.

Issue 1.11 49

Firebird Pascal API (fbintf) Guide

The Firebird Pascal APl extends this syntax to allow for named parameters using the same
conventions used for the Firebird Procedure and Trigger Language, where named parameters are
case insensitive SQL identifiers preceded by a colon. For example:

Select * from MyTable Where MyKeyName 1like :PARAM
In the above, “PARAM” is a named parameter.

An SQL Statement containing named parameters is parsed by the Firebird Pascal API before the
statement is passed to the Firebird APl and the named parameters replaced by placeholders
(question marks), A lookup table is retained to provide a mapping between parameter names and
their position. It is then possible for the API user to specify parameter values by name, with the
Firebird Pascal API looking up the name and setting the corresponding positional parameter with
the required value.

As a further extension, parameter names are not required to be unique. When a non-unique
parameter name is set to a given value, all positional parameters linked to the same name are set
to the required value. The API user can thus set more than one parameter value in a single
operation.

Duplicate Parameter Names can be very useful. For example, an SQL Select Statement may be
given as

Select Col1i, Col2
From Table_A

Where Col3 = :arg1l
UNION

Select Col4, Cols
From Table_B

Where Col6é = :argl

In this case, "argl" need only be set once. e.g.

SQLParams.ByName('argl').AsInteger := 3;
Both cases will be set to 3.

Named parameters must normally conform to the rules for SQL identifiers. However, it is also
possible to have named parameters enclosed in double quotes. As with SQL identifiers, hame
parameters in double quotes may contain any characters including punctuation and spaces. For
example:

Select * from MyTable Where MyKeyName like :”A PARAM”

Parameter names are normally case insensitive. However, parameters may be both declared case
sensitive and referenced using the “ByName” method and a case sensitive compare. Case
sensitive parameter names may be requested on a per SQL statement basis when the IStatement
interface is created by a call to IAttachment.PrepareWithNamedParameters method and setting the
CaseSensitiveParams argument to true.

6.1.2 Column Names
An SQL Statement that results in output data (e.g. a select statement) provides a results set that

allows the data items (fields) in each output to be accessed by statement position or by (case
insensitive) name. For example:

50

Working with Dynamic SQL

Select EMP_NO, FULL_NAME from EMPLOYEES;

In this case, the fields in the results set can be accessed positionally, with EMP_NO at position 0
and FULL_NAME at position 1, or by name using EMP_NO and FULL_NAME as the field names.

The fields in a results set should always have field names identical to the source Firebird table
column name, or, if provided, a column alias name given in the SQL Statement. However, there
are exceptions.

Firebird identifiers (e.g. column names) are typically case insensitive and are converted to upper
case when processed and reported. This translates into the Firebird Pascal API always reporting
upper case column names and matching column names to field names using a case insensitive
match.

However, in SQL Dialect 3, Firebird introduced the ability to enclose identifiers in double quotes.
This is necessary if, for example, you want a column name that is the same as an SQL Reserved
word. It also allows you to have case sensitive column names, or column names containing
spaces.

For Example:

Create Table MY_TABLE (
"KeyField" Integer,
"GRANT" VarcChar (32),
"My Column" Float
)i
The Firebird Pascal API could readily handle case sensitive column names and isn't bothered by
SQL reserved words. However, looking forward to using the Firebird Pascal API from IBX, there is
the problem that the Lazarus TDataSet model includes the ability to automatically generate TField
properties and which are then added to the Form's list of properties. The name of the generated
property is formed by concatenating the IBX object name with the column alias name.

Pascal identifiers are also case insensitive and this could cause problems if two column names
differ only in the case of their letters: the generated property names will cause a compilation error.
Neither can Pascal identifiers contain spaces.

The Firebird Pascal API handles this by forcing all column names to upper case, regardless of how
they are defined in SQL. It also replaces spaces by underscores. The identifiers given to
Generated column properties are then both valid Pascal and unambiguous. However, it is still
necessary to handle cases where two column names differ only in their case - forcing the column
names to upper case will only result in a name clash.

It is also the case that column alias names aren't always unique anyway. For example, in the SQL:

select sum(coll), sum(col2) from MyTable;

Firebird will generate the alias name "SUM" for both cases. It will also allow you to specify the
same alias name multiple times in the same statement.

The Firebird Pascal API handles this by checking for non-unique alias names when the SQL is
prepared and disambiguating the column names by adding a numerical suffix (starting from one) to
each non-unigue column name it finds after the first one. The same approach is used when non-
unique column names result after forcing the column name to upper case.

Issue 1.11 51

Firebird Pascal API (fbintf) Guide

For example, with a table defined as

Create Table MY_TABLE (
TableKey Integer not null,
"My Field" VarChar(32),
"MY Field" VarChar(32),
Primary Key(TableKey)
);
The column names used by the Firebird Pascal API will be

TABLEKEY
MY_FIELD
MY_FIELD1

respectively.

IResults.ByName('tableKey').AsInteger
IResults.ByName('MY_FIELD').AsString
IResults.ByName('my_field1l').AsString

Are then all valid examples for accessing the column values.
6.2 SQL Statement with no input or output

An SQL Statement with no input or output (e.g. a DDL statement) may be executed quickly and
efficiently using the lAttachment.Execimmediate method. Several variants of this method are
available:

procedure ExecImmediate(transaction: ITransaction; sql: AnsiString;

SQLDialect: integer); overload;
procedure ExecImmediate(TPB: array of byte; sql: AnsiString;

SQLDialect: integer); overload;
procedure ExecImmediate(transaction: ITransaction; sql: AnsiString); overload;
procedure ExecImmediate(TPB: array of byte; sql: AnsiString); overload;

In each case an SQL Statement is provided as a plain text string. The variations allow for the
transaction to be provided explicitly or defined as TPB (no value) parameters, and to enable the
SQL Dialect to be explicitly provided. By default, the default connection SQL Dialect is used.

If the transaction is defined by TPB parameters then a transaction is constructed for the statement,
the statement is executed and the transaction committed. When the transaction is given explicitly,
it is the responsibility of the caller to commit the transaction.

For example:

const
sglCreateTable =
'Create Table TestData ('+
'"RowID Integer not null, '+
'Title VarChar(32) Character Set UTF8, '+
'BlobData Blob sub_type 0, '+
'Primary Key(RowID)'+
I)I;
begin
Attachment.ExecImmediate([isc_tpb_write,

isc_tpb_wait,
isc_tpb_consistency], sqlCreateTable);

52

Working with Dynamic SQL

6.3 Metadata

Metadata provides information about data and a database's metadata includes the definition of
data structures such as tables. When executing a DML SQL Statement with parameters, it is also
useful to know the metadata that describes the statements input and/or output. In this case, the
metadata tells the user information about each input parameter or column in the result set that
includes:

* the SQL Type

e any names or other identification information

» refinements of the SQL Type, such as the character set used for strings, or the number
decimal places in fixed point data.

* Whether the column or parameter can be set to null.

The IAttachment.Prepare method is the first step in executing an SQL Statement and, on
successful completion, also provides the statement's metadata, via the IStatement interface:

function Prepare(transaction: ITransaction; sql: AnsiString;
asSQLDialect: integer): IStatement; overload;
function Prepare(transaction: ITransaction; sql: AnsiString): IStatement; overload;
function PrepareWithNamedParameters(transaction: ITransaction; sql: AnsiString;
aSQLDialect: integer; GenerateParamNames: boolean=false;
): IStatement; overload;
function PrepareWithNamedParameters(transaction: ITransaction; sql: AnsiString;
GenerateParamNames: boolean=false;
): IStatement; overload;

As shown above, four variants of the prepare method are available; all return an IStatement
interface. The first two are used for statements that contain either no parameters or positional
parameters only. The latter two are intended for statements that used named parameters.
However, they may also be used for any SQL Statement — the prepare variant simply avoids the
processing overhead of parsing the SQL in the client API.

The other variation is whether or not the SQL Dialect is given explicitly or defaults to the default
connection SQL Dialect.

When statements are prepared with named parameters it is also possible to set
GenerateParamNames to true. This is an IBX hangover and, in this case, if a positional
placeholder (i.e. a ?) is found then it is linked to a named parameter in the format 'IBXParamn’
where n is position number of the parameter.

6.3.1 Input Parameter Metadata

After the completion of the prepare step, the IStatement interface can be queried to determine the
input parameter metadata, if any, using the IStatement.SQLParams property. This property returns
an ISQLParams interface:

ISQLParams = interface
function getCount: integer;
function getSQLParam(index: integer): ISQLParam;
function ParamExists(Idx: AnsiString): boolean;
function ByName(Idx: AnsiString): ISQLParam ;
function GetModified: Boolean;
function GetHasCaseSensitiveParams: Boolean;
property Modified: Boolean read GetModified;
property Params[index: integer]: ISQLParam read getSQLParam; default;

Issue 1.11 53

Firebird Pascal API (fbintf) Guide

property Count: integer read getCount;

end;

The ISQLParams interface identifies how many input parameters were found (the Count property)
and allows access to each one, either by position or by name (named parameter statements only).
If there are no input parameters the Count property returns zero.

Each parameter is returned as an ISQLParam interface:

54

IParamMetaData = interface

function GetSQLType: cardinal;

function GetSQLTypeName: AnsiString;
function getSubtype: integer;

function getScale: integer;

function getCharSetID: cardinal;

function getCodePage: TSystemCodePage;
function getIsNullable: boolean;

function GetSize: cardinal;

property SQLType: cardinal read GetSQLType;

end;

ISQLParam = interface(IParamMetaData)

function getColMetadata: IParamMetaData;

function GetIndex: integer;

function getName: AnsiString;

function GetAsBoolean: boolean;

function GetAsCurrency: Currency;

function GetAsInt64: Int64;

function GetAsDateTime: TDateTime; overload;

procedure GetAsDateTime(var aDateTime: TDateTime;
var aTimezoneID: TFBTimeZoneID); overload;

procedure GetAsDateTime(var aDateTime: TDateTime;
var aTimezone: AnsiString); overload;

var dstOffset: smallint;

var dstOffset: smallint;

procedure GetAsTime(var aTime: TDateTime; var dstOffset: smallint;
var aTimezoneID: TFBTimeZoneID; OnDate: TDateTime); overload;

procedure GetAsTime(var aTime: TDateTime; var dstOffset: smallint;
var aTimezone: AnsiString; OnDate: TDateTime); overload;

procedure GetAsTime(var aTime: TDateTime; var dstOffset: smallint;

var aTimezoneID: TFBTimeZoneID); overload;

procedure GetAsTime(var aTime: TDateTime; var dstOffset: smallint;

var aTimezone: AnsiString); overload;
function GetAsUTCDateTime: TDateTime;
function GetAsDouble: Double;
function GetAsFloat: Float;
function GetAsLong: Long;
function GetAsPointer: Pointer;
function GetAsQuad: TISC_QUAD;
function GetAsShort: short;
function GetAsString: AnsiString;
function GetIsNull: boolean;
function GetAsVariant: Variant;
function GetAsBlob: IBlob;
function GetAsArray: IArray;
function GetAsBCD: tBCD;
function GetStatement: IStatement;
function GetTransaction: ITransaction;
procedure Clear;
function GetModified: boolean;
procedure SetAsBoolean(AValue: boolean);
procedure SetAsCurrency(avValue: Currency);
procedure SetAsInt64(avalue: Int64);
procedure SetAsDate(avalue: TDateTime);
procedure SetAsLong(avValue: Long);
procedure SetAsTime(aValue: TDateTime); overload;

procedure SetAsTime(aValue: TDateTime; OnDate: TDateTime;

Working with Dynamic SQL

aTimeZoneID: TFBTimeZoneID); overload;

procedure SetAsTime(aValue: TDateTime; OnDate: TDateTime;

aTimeZone: AnsiString); overload;
procedure SetAsTime(aValue: TDateTime; aTimeZoneID: TFBTimeZoneID); overload;
procedure SetAsTime(aValue: TDateTime; aTimeZone: AnsiString); overload;
procedure SetAsDateTime(aValue: TDateTime); overload;
procedure SetAsDateTime(avValue: TDateTime; aTimeZoneID: TFBTimeZoneID); overload;
procedure SetAsDateTime(aValue: TDateTime; aTimeZone: AnsiString); overload;
procedure SetAsUTCDateTime(aUTCTime: TDateTime);
procedure SetAsDouble(aValue: Double);
procedure SetAsFloat(avalue: Float);
procedure SetAsPointer(aValue: Pointer);
procedure SetAsShort(avalue: Short);
procedure SetAsString(aValue: AnsiString);
procedure SetAsVariant(avalue: Variant);
procedure SetIsNull(aValue: Boolean);
procedure SetAsBlob(avalue: IBlob);
procedure SetAsArray(anArray: IArray);
procedure SetAsQuad(avValue: TISC_QUAD);
procedure SetCharSetID(aValue: cardinal);
procedure SetAsBcd(aVvalue: tBCD);
property AsDate: TDateTime read GetAsDateTime write SetAsDate;
property AsBoolean:boolean read GetAsBoolean write SetAsBoolean;
property AsTime: TDateTime read GetAsDateTime write SetAsTime;
property AsDateTime: TDateTime read GetAsDateTime write SetAsDateTime;
property AsDouble: Double read GetAsDouble write SetAsDouble;
property AsFloat: Float read GetAsFloat write SetAsFloat;
property AsCurrency: Currency read GetAsCurrency write SetAsCurrency;
property AsInt64: Int64 read GetAsInt64 write SetAsInt64;
property AsInteger: Integer read GetAsLong write SetAsLong;
property AsLong: Long read GetAsLong write SetAsLong;
property AsPointer: Pointer read GetAsPointer write SetAsPointer;
property AsShort: Short read GetAsShort write SetAsShort;
property AsString: AnsiString read GetAsString write SetAsString;
property AsVariant: Variant read GetAsVariant write SetAsVariant;
property AsBlob: IBlob read GetAsBlob write SetAsBlob;
property AsArray: IArray read GetAsArray write SetAsArray;
property AsBCD: tBCD read GetAsBCD write SetAsBCD;
property AsQuad: TISC_QUAD read GetAsQuad write SetAsQuad;
property Value: Variant read GetAsVariant write SetAsVariant;
property IsNull: Boolean read GetIsNull write SetIsNull;
property IsNullable: Boolean read GetIsNullable;
property Modified: Boolean read getModified;
property Name: AnsiString read GetName;

end;

The ISQLParam interface is a large interface, as it provides both type information and setters and
getters as well as corresponding properties for each data type supported. It provides both the input
parameter metadata as well as a means of setting each parameter.

The caller may use the SQLType property to determine the actual data type of the parameter. The
Firebird Data Definition Guide should be consulted for information on SQL Types and use of the
scale property for fixed point types. Constants for the available SQL Types are defined in the “IB”
unit.

Note that parameter metadata is mutable and may change after a value is set. For example, the
underlying column SQL type could be VARCHAR. When the interface is first accessed the
SQLType returns SLQ_VARYING. However, after a call to SetAsinteger, this will change to
SQL_LONG. Firebird will convert the value to a string type when the statement is executed.

The underlying column metadata can always be accessed using the metadata returned by
getColMetadata. This is not affected by setting the parameter value.

Issue 1.11 55

Firebird Pascal API (fbintf) Guide

The use of this interface is discussed below in 6.4, and is typically used to set the values of the
input parameters. For example:

MyStatement := MyAttachment.Prepare(MyTransaction,
'Select * From MyTable where rowid = ?');
if (MyStatement.SQLParams.Count > 0) and
(MyStatement.SQLParams[0].SQLType = SQL_INTEGER) then
MyStatement.SQLParams[Q].AsInteger := 1;

In the above example, the number of input parameters is checked to ensure that at least one is
available and the input parameter type is tested to ensure that it is an integer. However, in practice,
this can usually be assumed a priori and this test omitted, given that the programmer has also
specified the SQL Statement.

Note that you can set an input parameter to any data type which can be converted by the Firebird Engine to
the input parameter data type. For example, a date can also be expressed as a date string.

The Binary Coded Decimal (BCD) type was added in fbintf 1.2.0 in order to support the Firebird 4
DECFloatl6, DECFloat34 and the extended precision NUMERIC and DECIMAL column types. It
can be used for other floating point column types as long as the values are in range. Likewise, the
new Firebird 4 column types can also be set as other floating point types for values within their
ranges.

Time and timestamp columns with a Time Zone were also added in Firebird 4. The underlying
concepts, Getter Methods and support functions for time zones are described in 6.6. The
ISQLParam interface also provides setter methods that allow a TDateTime to included a time zone
ID or time zone name, or to be provided as a UTC time or timestamp.

* The SetAsDate method should be used when the data type is DATE.

* The SetAsDateTime methods should be used when the data type is TIMESTAMP or
TIMESTAMP WITH TIME ZONE. In the latter case, a a time zone ID or time zone name
must be provided.

* The SetAsTime methods should be used when the data type is TIME or TIME WITH TIME
ZONE. In the latter case, a atime zone ID or time zone name must be provided.
Optionally, a date may be provided on which the conversion to GMT takes place (see C.3).

6.3.2 Output Metadata
The output metadata describes the structure of the dataset that an SQL Statement returns after it
is executed. It therefore consists only of information and provides no access to data. After the

successful completion of an IStatement.Prepare statement, the |Statement.Metadata property
gives access to the Output Metadata and returns an IMetadata interface:

56

IMetaData =
function
function
function

function
property

property
end;

Working with Dynamic SQL

interface

getCount: integer;
getColumnMetaData(index: integer): IColumnMetaData;
GetUniqueRelationName: AnsiString;

{Non empty if all columns come from the same table}
ByName(Idx: AnsiString): IColumnMetaData;
ColMetaData[index: integer]: IColumnMetaData

read getColumnMetaData; default;

Count: integer read getCount;

This is very similar in structure to the ISQLParams interface and allows the number of output
columns to be determined, and to access each such column either by position or name. In this
case, a hame is always available and is the unique column name (or alias if provided) given in the
SQL Statement. For each column, the interface returns an IColumnMetaData interface:

IColumnMetaData = interface

function
function
function
function
function
function
function
function

function

function
function
function
function
function
function
function
function
function
function
property
property
property
property
property
property
end;

GetIndex: integer;
GetSQLType: cardinal;
GetSQLTypeName: AnsiString;
getSubtype: integer;
getRelationName: AnsiString;
getOwnerName: AnsiString;
getSQLName: AnsiString; {Name of the column in original table}
getAliasName: AnsiString; {Alias Name of column or Column Name
if no alias}
getName: AnsiString; {Disambiguated uppercase Field Name
- see 6.1.2}
getScale: integer;
getCharSetID: cardinal;
getCodePage: TSystemCodePage;
getIsNullable: boolean;
GetSize: cardinal;
GetArrayMetaData: IArrayMetaData; {Valid only for Array SQL Type}
GetBlobMetaData: IBlobMetaData; {Valid only for Blob SQL Type}
GetDateTimeStrLength(DateTimeFormat: TIBDateTimeFormats): integer;
GetStatement: IStatement;
GetTransaction: ITransaction;
Name: AnsiString read GetName;
Size: cardinal read GetSize;
SQLType: cardinal read GetSQLType;
Scale: integer read getScale;
SQLSubtype: integer read getSubtype;
IsNullable: Boolean read GetIsNullable;

The caller may use the SQLType property to determine the actual data type of each column. The
Firebird Data Definition Guide should be consulted for information on SQL Types and use of the
scale property for fixed point types. The handling of Blob types is discussed in chapter 7, and the
handling of array types is discussed in chapter 8. Otherwise:

* The SQLTypeName is the textual representation of the SQL Type

* The subtype applies only to Blobs and distinguishes different Blob types.

* The Relation Name is the original table name from which the column is sourced.

* The Owner Name is the login user name of the table owner.

* The SQL Name is the column name used in the SQL Statement (may not be unique).

* The Alias Name is the alias given in the SQL Statement (must be unique)

* The Name property is the unique name of the column used in “ByName” lookups.

* The Character Set ID applies to text data and is the Firebird Character set id for the text.
* The Code Page is the system code page that corresponds to the Firebird Character Set.

Issue 1.11

57

Firebird Pascal API (fbintf) Guide

* The Size property depends on the data type. For variable length strings, it is the maximum
string length.

* GetDateTimeStrLength is used to return the maximum number of characters returned
when, respectively, an SQL type TIMESTAMP, DATETIME or TIME column is returned as
a formatted string.

6.4 SQL Statements with input parameters only

Examples of SQL Statements that have input parameters but no output include Insert, Update and
Delete Statements. In the general case. These statement must be prepared, as discussed above
and then executed using the IStatement.Execute method (although a short cut does exist — see
below):

function Execute(aTransaction: ITransaction=nil): IResults;

If the aTransaction parameter is omitted or set to nil, the same transaction that was used to
prepare the statement is used to execute it. However, it is possible to use an (e.g. long lived)
transaction to prepare a statement and then use a different (e.g. short lived) transaction to execute
the statement, as long as the first transaction is still active. This approach allows a prepared
statement to be executed multiple times (possibly with different parameters values), saving the
data each time by committing the transaction whilst avoiding having to prepare the statement each
time. That is because once a transaction is committed, a statement prepared using that transaction
is no longer valid.

Note: an alternative approach using CommitRetaining achieves the same effect and avoids having to use
separate transactions. However, this is at the cost of not releasing server resources until the transaction is
finally committed. Using separate prepare and execute transactions can avoid this overhead and is
particularly useful when large numbers of records are affected.

For example:

MyStatement := MyAttachment.Prepare(MyTransaction,

'Update MyTable Set MyText = ? where rowid = ?');
MyStatement.SQLParams[Q].AsString := 'Some new text';
MyStatement.SQLParams[1].AsInteger := 1;

MyStatement.Execute;
MyTransaction.CommitRetaining;

The above example, prepares an update statement with positional parameters, then sets the value
of those parameters and executes the statement. The update is saved to the database with
CommitRetaining. The parameters can now be set to different values and the statement executed
again, without having to re-prepare the statement.

Note that the IResults interface is returned by the execute method. However, this is ignored in the above
example as there is no useful information returned. However, there are cases when useful information is
returned and this is discussed in 6.5 below.

Note that an error is raised if any of the input parameters have not been given a value when the statement is
executed.

6.4.1 The IAttachment.ExecuteSQL method
The IAttachment ExecuteSQL method provides a short cut for the above which is often more

appropriate than having separate steps to prepare, assign parameter and execute a statement.
There are a set of ExecuteSQL methods available:

58

Working with Dynamic SQL

function ExecuteSQL(TPB: array of byte; sql: AnsiString; SQLDialect: integer;
params: array of const): IResults; overload;
function ExecuteSQL(transaction: ITransaction; sql: AnsiString;
SQLDialect: integer; params: array of const): IResults; overload;
function ExecuteSQL(TPB: array of byte; sql: AnsiString;
params: array of const): IResults; overload;
function ExecuteSQL(transaction: ITransaction; sql: AnsiString;
params: array of const): IResults; overload;

These vary by whether or not the connection default SQL Dialect is used, or whether an existing
transaction is used or whether the statement is executed and commited in a single step with the
transaction parameters provided as a list TPB constants.

An Execute SQL statement may have positional parameters and if so, the parameter values are
provided as an array of const. For example:

Attachment.ExecuteSQL(Transaction, 'Execute Procedure DELETE_EMPLOYEE ?', [8]);

The ExecuteSQL statement can return a single row of results in the IResults interface. See below.

6.5 SQL Statements with Output

An SQL Statement with output is defined here as a non-select SQL Statement that returns a single
row of data values. An example of such a statement is “InsertReturning”. In this case, the
IResults interface returned by the IStatement.Execute or IAttachment.ExecuteSQL methods
provides the returned data.

IResults = interface

function getCount: integer;

function GetStatement: IStatement;

function GetTransaction: ITransaction;

function FieldExists(Idx: AnsiString): boolean;

function ByName(Idx: AnsiString): ISQLData;

function getSQLData(index: integer): ISQLData;

procedure GetData(index: integer; var IsNull:boolean;

var len: short; var data: PByte);

procedure SetRetainInterfaces(aValue: boolean); {see 6.11}

property Data[index: integer]: ISQLData read getSQLData; default;
property Count: integer read getCount;
end;

This interface may be used to determine how many data items are returned (Count property) and
allows each data item to be accessed either by position or by name, where the data item name is
the output column name. It can also be used to get direct access to the raw data for each column
by position (using the GetData method). This returns a null indicator, the length of the data and a
pointer to the raw data (i.e. in Firebird encoding) returned from the database. When the data type
is SQL_TEXT or SQL_VARYING, the pointer is always to the first character in the string (of length
len bytes).

6.5.1 The ISQLData Interface

Each data item may also be accessed as a properly formatted type via an ISQLData interface:

ISQLData = interface(IColumnMetaData)

Issue 1.11 59

Firebird Pascal API (fb

function
function
function
function
function
procedure

procedure
procedure
procedure
procedure
procedure

function
function
function
function
function
function
function
function
function
function
function
function
function
function
property
property
property
property
property
property
property
property
property
property
property
property
property
property
property
property
property
property
property
property
end;

Intf) Guide

GetStrDataLength: short;
GetAsBoolean: boolean;
GetAsCurrency: Currency;
GetAsInt64: Inté64,
GetAsDateTime: TDateTime; overload;
GetAsDateTime(var aDateTime: TDateTime; var dstOffset: smallint;
var aTimezoneID: TFBTimeZoneID); overload;
GetAsDateTime(var aDateTime: TDateTime; var dstOffset: smallint;
var aTimezone: AnsiString); overload;
GetAsTime(var aTime: TDateTime; var dstOffset: smallint;
var aTimezoneID: TFBTimeZoneID; OnDate: TDateTime); overload;
GetAsTime(var aTime: TDateTime; var dstOffset: smallint;
var aTimezone: AnsiString; OnDate: TDateTime); overload;
GetAsTime(var aTime: TDateTime; var dstOffset: smallint;
var aTimezoneID: TFBTimeZoneID); overload;
GetAsTime(var aTime: TDateTime; var dstOffset: smallint;
var aTimezone: AnsiString); overload;
GetAsUTCDateTime: TDateTime;
GetAsDouble: Double;
GetAsFloat: Float;
GetAsLong: Long;
GetAsPointer: Pointer;
GetAsQuad: TISC_QUAD;
GetAsShort: short;
GetAsString: AnsiString;
GetIsNull: Boolean;
GetAsVariant: Variant;
GetAsBlob: IBlob; overload;
GetAsBlob(BPB: IBPB): IBlob; overload;
GetAsArray: IArray;
GetAsBCD: tBCD;
AsDate: TDateTime read GetAsDateTime;
AsBoolean:boolean read GetAsBoolean;
AsTime: TDateTime read GetAsDateTime;
AsDateTime: TDateTime read GetAsDateTime ;
AsDouble: Double read GetAsDouble;
AsFloat: Float read GetAsFloat;
AsCurrency: Currency read GetAsCurrency;
AsInt64: Int64 read GetAsInt64 ;
AsInteger: Integer read GetAslLong;
AsLong: Long read GetAslLong;
AsPointer: Pointer read GetAsPointer;
AsQuad: TISC_QUAD read GetAsQuad;
AsShort: short read GetAsShort;
AsString: AnsiString read GetAsString;
AsVariant: Variant read GetAsVariant ;
AsBlob: IBlob read GetAsBlob;
AsArray: IArray read GetAsArray;
AsBCD: tBCD read GetAsBCD;
IsNull: Boolean read GetIsNull;
Value: Variant read GetAsVariant;

ISQLData is primarily a set of getters for each data type. Type conversion is performed where
possible. For example, all scaler types and dates can be returned as strings. AsDouble and
AsCurrency automatically adjust fixed point types to reflect the “scale” specified in the metadata.

The GetAsBCD call was added in support of new Firebird 4 data types. GetAsBCD must be used

for the DECFloatl

6, DECFloat34, INT128 and the extended precision NUMERIC and DECIMAL

column types in order to avoid range errors when accessing large floating point values. The
FmtBCD unit (Free Pascal or Delphi) defines the tBCD type and various support functions.

60

Working with Dynamic SQL

Note that the ISQLData interface inherits from the IColumnMetaData interface. It thus also provides direct
access to the data item's metadata. An ISQLData interface is simply an IColumnMetaData interface plus
getter methods for each data type supported and corresponding properties.

For example:

var theResults: IResults;

begin
MyStatement := MyAttachment.PreparewWithNamedParameters(MyTransaction,
'Insert into MyTable (MyText, RowID) Values (:INITIALTEXT, :ROWID) '+
'Returning RowID';
MyStatement.SQLParams.ByName('INITIALTEXT').AsString := 'Some text';
MyStatement.SQLParams.ByName('ROWID').AsInteger := 1;
theResults := MyStatement.Execute;
writeln('Insert completed with Rowid = ', theResults[0].AsInteger);

6.6 Date and Time Column Types

Firebird provides the DATE, TIME, TIMESTAMP column types for storing date and time values.
From Firebird 4 onwards, it additionally provides the TIME WITH TIME ZONE and the
TIMESTAMP with TIME ZONE column types. These are discussed in detail in Appendix C.

Note that a time zone can be represented as either a displacement (in minutes) from GMT, or as a time zone
name (e.g. Europe/London or EDT, etc.). There is a subtle difference in the semantics of the two
representations. A displacement accurately reflects the difference between local time and GMT. However, it
does not identify the actual time zone, nor does it identify whether daylight savings time is in effect. On the
other hand, when a time zone name is provided, the time zone database can be used to determine not just
the displacement from GMT on any given date, but also whether daylight savings time is in effect.

A displacement is simply the time difference in hours and minutes between the local time given by the time
value and GMT. For a timestamp (i.e. which includes the date) there is little to choose between using a
displacement and a time zone name. Both can be used to calculate the equivalent in GMT. However, for a
“Time with Time Zone” type, the time is devoid of any date information. It is a local time — but on which day?
This is because the displacement will differ depending on whether or not daylight savings time is in effect.

The ISQLData interface returns the value of a Date, Time or Timestamp column through the
default GetAsDateTime getter method. This returns the column value as a TDateTime. This does
not include any time zone information.

When the time or timestamp column also contains a timestamp, the extended GetAsDateTime or
GetAsTime methods must be used to additionally return the timezone as a Time Zone Name or
Identifier plus the offset in minutes from GMT.

Note: the ITimeZoneServices interface provides utility functions to translate between a Time Zone Name and
Identifier, and to return the current time zone displacement from GMT taking into account daylight savings
time.

GetAsDateTime and GetAsTime return the local time for the time zone. GetAsUTCTime is used to
return the same time as UTC time (in this context, the same as GMT).

TIME WITH TIME ZONE data types are stored in the database as GMT times. The date on which

conversion to GMT is performed may also be provided as a parameter to the GetAsTime method,
otherwise the current default is used (see C.3.4).

Issue 1.11 61

Firebird Pascal API (fbintf) Guide

The following date/time and timezone support functions are also available in the IBUtils unit:

function ParseDateTimeTZString(aDateTimeStr: Ansistring; var aDateTime: TDateTime;
var aTimezone: AnsiString; aFormatSettings: TFormatSettings;
TimeOnly: boolean=false): boolean; overload;
function ParseDateTimeTZString(aDateTimeStr: Ansistring; var aDateTime: TDateTime;
var aTimezone: AnsiString;
TimeOnly: boolean=false): boolean; overload;
procedure GetTimeZoneInfo(attachment: IAttachment; aTimeZone: AnsiString;
OnDate: TDateTime; var ZoneOffset, DSTOffset, EffectiveOffset: integer);
procedure FBDecodeTime(aTime: TDateTime; var Hour, Minute, Second: word;
var DeciMillisecond: cardinal);
function FBEncodeTime(Hour, Minute, Second, DeciMillisecond: cardinal): TDateTime;
function FBFormatDateTime(fmt: AnsiString; aDateTime: TDateTime): AnsiString;
function FormatTimeZoneOffset(EffectiveTimeOffsetMins: integer): AnsiString;
function DecodeTimeZoneOffset(TZOffset: AnsiString; var dstOffset: integer): boolean;

Respectively, the above may be used to:

* Parse a timestamp with time zone string into a TDateTime and Time Zone Name using
either the provided format settings or the defaults.

¢ Retrieve time zone information from the remote server.
* Decode and Encode a TDateTime using Hours, Minutes, Seconds and Decimilliseconds.
Note the standard functions (EncodeTime and DecodeTime) are only of millisecond

resolution and hence do not permit full use of Firebird's deci-millisecond resolution.

* Extend the standard FormatDateTime function to support a four digit format ('zzzz") for the
fractional part of a second (i.e. deci-millisecond resolution).

* Render a time zone offset (in minutes relative to GMT) as a string.

* Decode a time zone offset (e.g. '-08:00").

6.7 The Numeric Data Type

Firebird supports Fixed Point numbers. That is numbers that are held internally as integers but with
a scale factor where the actual value is evaluated as:

<value> = <integer value> * 10”"(scale factor)
The scale factor is normally negative and corresponds to the number of decimal places. For
example, the Pascal currency type is held internally as a 64-bit signed integer with a scale factor or

-4 i.e. four decimal places.

Fixed point arithmetic can be more accurate than floating point arithmetic and is preferred in some
situations e.g. for Financial Computations.

Firebird declares fixed point type as Numeric or Decimal with a precision and number of decimal
places. For example:

Numeric(10,4)
declares a data type that has a precision of ten digits including four decimal places. Firebird

internally holds numerics as 16-bit, 32-bit or 64-bit integers plus scale factor, with the integer
precision depending on the number of decimal digits requested when the data type is declared.

62

Working with Dynamic SQL

From Firebird 4 onwards, the DECFLOAT data type can be used to support even larger numbers
of decimal places that can be supported by a 64-bit integer.

In order to support Fixed Point numbers without loss of precision, the Firebird Pascal APl has
defined the IFBNumeric interface:

IFBNumeric = interface
['{8bdccfe9-d552-446b-bd82-844ca264455d} "]
function getRawValue: Int64;
function getScale: integer;
function AdjustScaleTo(aNewScale: integer): IFBNumeric;
function getAsString: AnsiString;
function getAsDouble: double;
function getAsBCD: TBCD;
function getAsInt64: Int64; {scaled}
function getAsInteger: integer; {scaled - may be truncated}
function getAsSmallInt: SmallInt; {scaled - may be truncated}
function getAsCurrency: Currency;

end;

The underlying implementation of this interface holds the fixed point value as a 64-bit integer plus
scale factor. The FBNumeric unit also contains a set of factory functions that can create and return
IFBNumerics i.e.

function StrToNumeric(aValue: AnsiString): IFBNumeric;

function DoubleToNumeric(aValue: double): IFBNumeric;

function BCDToNumeric(aValue: TBCD): IFBNumeric;

function CurrToNumeric(aValue: currency): IFBNumeric;

function IntToNumeric(avValue: Int64): IFBNumeric;

function NumericFromRawValues(aValue: Int64; aScale: integer): IFBNumeric;

The ISQLData.GetAsNumeric function returns an IFBNumeric.

ISQLParam supports both GetAsNumeric and SetAsNumeric to, respectively, return the param
value as an IFBNumeric and to set the param from a numeric. A set of functions is also available
for numeric operations:

{Numeric Arithmetic}

function NumericAdd(x,y: IFBNumeric): IFBNumeric; overload; {returns x + y}

function NumericSubtract(x,y: IFBNumeric): IFBNumeric; overload; {returns x - y}

function NumericMultiply(x,y: IFBNumeric): IFBNumeric; overload; {returns x * y}

function NumericDivide(x,y: IFBNumeric): IFBNumeric; overload; {returns x div y}

function NumericCompare(x,y: IFBNumeric): integer; overload; {returns -1: x <vy; 0: x = y;
1: x > y}

function Negate(x: IFBNumeric): IFBNumeric; overload; {returns -x}

{integer operations}

function NumericAdd(x: IFBNumeric; y: int64): IFBNumeric; overload; {returns x + y}
function NumericSubtract(x: IFBNumeric; y: int64): IFBNumeric; overload; {returns x - y}
function NumericSubtract(x: int64; y: IFBNumeric): IFBNumeric; overload; {returns x - y}
function NumericMultiply(x: IFBNumeric; y: int64): IFBNumeric; overload; {returns x * y}
function NumericDivide(x: IFBNumeric; y: int64): IFBNumeric; overload; {returns x div y}
function NumericDivide(x: int64; y: IFBNumeric): IFBNumeric; overload; {returns x div y}
function NumericCompare(x: IFBNumeric; y: int64): integer; overload; {returns -1: x < y;

0: x =vy; 1: x > vy}

{floating point operations}

function NumericAdd(x: IFBNumeric; y: double): IFBNumeric; overload; {returns x + y}

function NumericSubtract(x: IFBNumeric; y: double): IFBNumeric; overload; {returns x - y}
function NumericSubtract(x: double; y: IFBNumeric): IFBNumeric; overload; {returns x - y}
function NumericMultiply(x: IFBNumeric; y: double): IFBNumeric; overload; {returns x * y}
function NumericDivide(x: IFBNumeric; y: double): IFBNumeric; overload; {returns x div y}
function NumericDivide(x: double; y: IFBNumeric): IFBNumeric; overload; {returns x div y}
function NumericCompare(x: IFBNumeric; y: double): integer; overload; {returns -1: x <y; 0: x =
y; 1: X >y}

Issue 1.11 63

Firebird Pascal API (fbintf) Guide

6.8 Query Statements

A query statement is an SQL Select Statement. It may or may not have input parameters and can
return zero, one or more rows of data. A query statement's metadata describes each column in the
results set.

A query statement is prepared and has its input parameters, if any, set in the same way as any
other SQL Statement. The difference comes when it is executed.

Note: A query statement can be distinguished from other SQL Statements, by checking the
IStatement.SQL StatementType property. A query statement has an SQL Statement Type of SQLSelect.

A query statement is executed using the IStatement.OpenCursor the method:

function OpenCursor(aTransaction: ITransaction=nil): IResultSet;

This is very similar to the execute statement, except that it returns an IResultSet interface instead
of an IResults interface:

IResultSet = interface(IResults)
function FetchNext: boolean; {fetch next record}
function FetchPrior: boolean; {fetch previous record}
function FetchFirst:boolean; {fetch first record}
function FetchLast: boolean; {fetch last record}
function FetchAbsolute(position: Integer): boolean; {fetch record by its absolute
position in result set}
function FetchRelative(offset: Integer): boolean; {fetch record by position
relative to current}
function GetCursorName: AnsiString;
function IsBof: boolean;
function IskEof: boolean;
procedure Close;
end;

Note that this interface inherits from IResults and hence allows access to each column's data item in the
same way as an IResults interface. It extends IResults to provide a means of scrolling through the result set.

Note: with Firebird 3, the cursor name is always empty.
When the results set is first returned, it is not focused on any row of the dataset and any attempt to
access any inherited IResults methods or properties will result in an error. The FetchNext method

must first be called to advance the cursor to the first row. This will return false if there are no more
rows in the dataset.

Note that the IsEof method always returns false until FetchNext is called for the first time, even when the
dataset is empty.

6.8.1 Scrollable Cursors
If a scrollable cursor is selected then:
* FetchPrior may be called to fetch the previous record
* FetchFirst may be called to fetch the first record in the dataset.
* FetchLast may be called to fetch the last record in the dataset.
* FetchAbsolute may called to fetch by record number.
* FetchRelative may called to fetch by the relative record number.

Note: scrollable cursors are only supported for local databases at present (Firebird limitation).

64

Working with Dynamic SQL

6.8.2 Usage Notes

The interface design is intended to facilitate the following processing:, using a while loop

var theResults: IResultSet;

begin
MyStatement := MyAttachment.Prepare(MyTransaction,
'Select * From MyTable Where MyText like ?');
MyStatement.SQLParams[Q].AsString := '%text%';
theResults := MyStatement.OpenCursor;
while theResults.FetchNext do
writeln('Row ', theResults.ByName('ROWID').AsInteger,

' has text ', theResults[1].AsString);

theResults.Close;

Note that the IResultSet should be closed after use by calling the Close method. However, this is not
essential as the result set is automatically closed when the interface goes out of scope.

If the empty dataset case needs to be handled separately, then the following may be used:

var theResults: IResultSet;

begin
MyStatement := MyAttachment.Prepare(MyTransaction,
'Select * From MyTable Where MyText like ?');
MyStatement.SQLParams[0] .AsString := '%text%';

theResults := MyStatement.OpenCursor;
if not theResults.FetchNext then
writeln('The Dataset was empty!')
else
repeat
writeln('Row ', theResults.ByName('ROWID').AsInteger,
' has text ', theResults[1].AsString);
until not theResults.FetchNext;
theResults.Close;

6.9 Simplified Queries

While some queries do return large and complex datasets, others return much simpler information
sets and sometimes only a single data item. For this latter case, fbintf offers convenience functions
that avoid the user having to proceed through all the above steps in order to, for example, count all
the rows in a table.

Theses are the OpenCursor and OpenCursorAtStart methods that are all provided by the
IAttachment interface (see 4.12) and are intended to be used in cases where the result set is
relatively simple. There are two main variants:

* The OpenCursor methods prepare and execute the SQL statement with the provided
transaction and return the result set.

* The OpenCursorAtStart group do the same, but additionally call sfetchNext on the results
set before returning.

These also vary by whether the default SQL Dialect is used or if the transaction is given as a

parameter or a list of TPB attributes, or simply a default transaction. When a default transaction is
used, the method creates its own transaction with parameters: isc_tpb_read, isc_tpb_wait and

Issue 1.11 65

Firebird Pascal API (fbintf) Guide

isc_tpb_concurrency and returns the result. For example, to get a count of all the rows in a table,
the following expression can be used:

int rowCount;
begin
rowCount := MyAttachment.OpenCursorAtStart(
'Select count(*) from MyTable')[0].AsInteger;

This works because on return, the result set has been advanced to the first and only row, and the
first and only data item in that row is an integer value i.e. the row count.

Positional parameters in queries are supported. If present, then an array of const “params” must be
provided with one parameter value for each positional parameter and in positional order. The
parameter values must be type compatible with each parameter .e.g.

var employees: integer;
begin
employees := Attachment.OpenCursorAtStart(
'Select count(*) As Counter from EMPLOYEE Where EMP_NO < ?',[8])[0].AsInteger

6.10 Batch Updatel/insert

Firebird 4 introduces the Batch Execution interface. This applies to Update and Insert queries only
(i.e. not update/insert returning) and can be used to batch up many separate queries to be
executed as a single operation. This can be used to minimise the client/server interfaces and to
optimise server update/insert times.

This interface is largely hidden by the Firebird Pascal APl and is primarily visible as six IStatement
methods. These are

procedure AddToBatch;

function ExecuteBatch(aTransaction: ITransaction=nil): IBatchCompletion;
procedure CancelBatch;

function GetBatchCompletion: IBatchCompletion;

function GetBatchRowLimit: integer;

procedure SetBatchRowLimit(aLimit: integer);

A batched update/insert query is prepared in the same way a a single execute update/insert query.
However, instead of executing the query, the AddToBatch method is called to save the current set
of SQL param values.

A new set of SQL Param values can now be assigned and AddToBatch called again to save the
values. This continues until the last param values have been saved, when ExecuteBatch is called
to execute the whole batch in a single operation.

If, for some reason, the batch updates are to be discarded rather than applied, the CancelBatch
method can be called to discard all saved parameter values.

Note: An IStatement prepared using an Insert or Update Query can be used in either Batch or Normal mode,
but not simultaneously. However, after a call to ExecuteBatch or CancelBatch, it is possible to update (or
leave in place) the SQL Parameter values and then call Execute in order to apply the Insert or Update i.e.
without having to use batch mode again.

66

6.10.1 Example

Working with Dynamic SQL

For example, and using the Firebird employee database, the following code illustrates a batch
insert. The first two inserted rows are saved and only once the third row has been specified are all

three rows inserted in a single operation.

Statement := Attachment.PrepareWithNamedParameters(Transaction, 'INSERT INTO
EMPLOYEE (EMP_NO, FIRST_NAME, LAST_NAME, PHONE_EXT, HIRE_DATE, ' +
'"DEPT_NO, JOB_CODE, JOB_GRADE, JOB_COUNTRY, SALARY) '+
'"VALUES (:EMP_NO, :FIRST_NAME, :LAST_NAME, :PHONE_EXT, :HIRE_DATE,' +
':DEPT_NO, :JOB_CODE, :JOB_GRADE, :JOB_COUNTRY, :SALARY)',3);
with Statement.GetSQLParams do
begin
ByName('EMP_NO') .AsInteger := 150;
ByName('FIRST_NAME').AsString := 'John';
ByName('LAST_NAME') .AsString 'Doe';

ByName ('PHONE_EXT') .AsString

ByName('HIRE_DATE') .AsDateTime

ByName('DEPT_NO').AsString :=
ByName(' JOB_CODE').AsString
ByName(' JOB_GRADE') .AsInteger

ByName(' JOB_COUNTRY').AsString
41000.89;

ByName('SALARY').AsFloat :=
end;
Statement.AddToBatch;
with Statement.GetSQLParams do
begin
ByName('EMP_NO') .AsInteger :=
ByName('FIRST_NAME').AsString
ByName('LAST_NAME') .AsString
ByName ('PHONE_EXT') .AsString

ByName('HIRE_DATE') .AsDateTime

ByName('DEPT_NO').AsString :=
ByName(' JOB_CODE').AsString
ByName(' JOB_GRADE') .AsInteger

ByName(' JOB_COUNTRY').AsString
42000.89;

ByName('SALARY').AsFloat :=
end;
Statement.AddToBatch;
with Statement.GetSQLParams do
begin
ByName('EMP_NO') .AsInteger :=
ByName('FIRST_NAME').AsString
ByName('LAST_NAME') .AsString
ByName ('PHONE_EXT') .AsString

ByName('HIRE_DATE') .AsDateTime

ByName('DEPT_NO').AsString :=
ByName(' JOB_CODE').AsString
ByName(' JOB_GRADE') .AsInteger

ByName(' JOB_COUNTRY').AsString
41000.99;

ByName('SALARY').AsFloat :=
end;
Statement.AddToBatch;
Statement.ExecuteBatch;

Notes:

I
:= EncodeDate(2015,4,1);
'600"';

= 'Eng';

= 4,
:= 'England';

151;
:= 'Jane’';
'Doe';
.

14
:= EncodeDate(2015,4,2);
'600"';

= 'Eng';

= 4,
:= 'England’';

152;
:= 'John';

'Smith';

II;

:= EncodeDate(2015,4,3);
'600"';

= 'Eng';

= 4,
:= 'England';

1. The parameter values are not automatically cleared following a call to AddToBatch. This means that

Issue 1.11

only those that change for each row need be updated.
The same SQL type must be used for each row in a batch update. For example, in the second insert

the line ByName('HIRE_DATE').AsString :=".." would cause an error as this implies a change in SQL
Type from SQL_TIMESTAMP (in the first row) to SQL_VARYING in the second.

67

Firebird Pascal API (fbintf) Guide

3. Inline blobs (i.e. where the param value is set using SetAsString - see 7.7) are supported.
6.10.2 The Batch Row Limit

The underlying Firebird 4 buffer used to save the updates prior to their being applied is finite. By
default, the buffer size is 16 MB but can be increased to 256 MB. Before adding each row to the
underlying buffer, AddToBatch checks for buffer overflow and if adding the row would overflow the
buffer, a EIBBatchBufferOverflow exception is raised.

This exception may be caught and the current buffer contents applied to the database with a call to
ExecuteBatch. AddToBatch may be called again to add the row to the now empty buffer. For
example:

while .. do
begin
{update SQLParams for next row}
try
MyStatement .AddToBatch;
except on E: EIBBatchBufferOverflow do
begin
MyStatement.ExecuteBatch;
{you might want to check the batch completion info here - see 6.10.3}
MyStatement.AddToBatch;
end;
else
raise;
end;
end;
MyStatement.ExecuteBatch;

See Test20 in the testsuite for an example of the above.

The SetBatchRowLimit method may be used to set an underlying buffer size appropriate to the
application. This sets the number of rows that can be safety written before a buffer overflow
occurs. The actual message buffer size will depend upon the number of SQL parameters and their
type. The BatchRowLimit is used to compute the minimum buffer size required for the given row
limit.

The default row limit is 1000.

The minimum buffer size requested is never less than 16 MB or greater than 256 MB. An exception
is raised on an initial call to AddToBatch and where the computed buffer size is greater than 256
MB. If the row limit is set to maxint then the maximum allowable buffer size is allocated.

6.10.3 The Batch Completion Interface

After the batch query has been executed, the performance statistics (see 6.12) can be accessed to
see how many updates/inserts have been performed. However, if an error occurred mid-way
through processing a batch then you need to be able to find out on which update the failure
occurred.

The Firebird Pascal APl always checks the result of a batch update and will raise an exception
reporting any error that terminated batch processing. In order to find out which row update failed
and which succeeded, you need to trap this exception and access the batch completion interface.

Once a batch operation has completed, either successfully or not, the batch completion interface
can be accessed using the IStatement GetBatchCompletion method:

68

Working with Dynamic SQL

function GetBatchCompletion: IBatchCompletion;

This returns an IBatchCompletion interface. This is declared as:
TBatchCompletionState = (bcExecuteFailed, bcSuccessNoInfo, bcNoMoreErrors);

IBatchCompletion = interface
['{9bc3d49d-16d9-4606-94e5-ee987103ad92} ']
function getTotalProcessed: cardinal;
function getState(updateNo: cardinal): TBatchCompletionState;
function getStatusMessage(updateNo: cardinal): AnsiString;
function getUpdated: integer;
function getErrorStatus(var RowNo: integer; var status: IStatus): boolean;

end;
Method Description
getTotalProcessed Returns the total number of rows processed.
getState Returns the completion state of each update/insert row. The
updateNo is zero based.
getStatusMessage Returns the text of any status message to explain an execution
failure for a given row. The updateNo is zero based.
getUpdated Returns the number of successful row update/inserts.
getErrorStatus Returns true if at least one row update has failed, and
* RowNo is set to the (one based) row number of the first
failed update.
» Status provides an IStatus object containing the error
information.

6.10.4 Information Services

The IStatement interface provides the following methods for support of batch updates:

function HasBatchMode: boolean;
function IsInBatchMode: boolean;

Method Description
HasBatchMode Returns true if batch mode operations are supported.
IsinBatchMode Returns true if a Batch Operation is in progress. i.e.
Execute(eaDefer) has been called and the batch has not yet been

Issue 1.11 69

Firebird Pascal API (fbintf) Guide

applied.

6.11 Performance Optimisation

Behind each interface is an object which has to be created and which will be automatically
destroyed when the interface reference goes out of scope. While this generally works well, this can
result in a significant overhead when processing a large dataset.

Both the IResults (and IResultsSet) and the IStatement interface have a SetRetaininterfaces
method that allows an internal flag to be set indicating whether or not subordinate interfaces are to
be retained rather than automatically destroyed when they go out of scope:

« If the IResults.SetRetaininterfaces flag is set to true then all subsequent ISQLData
interfaces returned by the interface are retained. This avoids the overhead of constantly
creating and discarding the interfaces when processing a large dataset.

« If the IStatement.SetRetaininterfaces flag is set to true then all IColumnMetaData and
ISQLParam interfaces returned by the interface are retained. This avoids the overhead of
constantly creating and discarding the interfaces if they are regularly referenced when
processing a large dataset.

Setting either flag to false releases all held interfaces (that are already out of scope) and the
interface no longer retains the subordinate interfaces.

Note: If this optimisation is used then it is important that the SetRetainInterfaces flag is explicitly set to false

when the interface is no longer required. Otherwise the retained interfaces will never be released, even when
the parent interface goes out of scope and a memory leak will result.

6.12 Performance Statistics

The IStatement interface also allows access to performance statistics. These are collected each
time a statement is executed or a cursor opened.

Statistics collection is disabled by default. To enable statistics collection for a statement, call the
EnableStatistics procedure setting the parameter to true.

Once enabled, the performance statistics for the mostly recently executed statement or cursor

opened (by this IStatement interface) can be obtained by a call to GetPerfStatistics. For example,
to report statistics in an ISQL fashion:

70

var stats: TPerfCounters;
begin

if Statement.GetPerfStatistics(stats) then

begin
writeln('Current memory = ', stats[psCurrentMemory]);
writeln('Delta memory = ', stats[psDeltaMemory]);
writeln('Max memory = ', stats[psMaxMemory]);

Working with Dynamic SQL

writeln('Elapsed time= ', FormatFloat('#0.000',6 stats[psRealTime]/1000),"' sec');
writeln('Cpu = ', FormatFloat('#0.000',6 stats[psUserTime]/1000),"' sec');

writeln('Buffers = ', stats[psBuffers]);
writeln('Reads = ', stats[psReads]);
writeln('Writes = ', stats[psWrites]);
writeln('Fetches = ', stats[psFetches]);
end;
end;

TPerfCounters is defined as an array:
TPerfStats = (psCurrentMemory, psMaxMemory,
psRealTime, psUserTime, psBuffers,
psReads, psWrites, psFetches,psDeltaMemory);

TPerfCounters = array[TPerfStats] of Int64;

Where the counter indexes reference the following counters:

psCurrentMemory | Current server memory used in bytes

psMaxMemory Max server memory used in bytes

psRealTime Local Query Execution elapsed time in milliseconds

psUserTime Local CPU time for execution in milliseconds

psBuffers Buffers in use after query execution

psReads Number of database reads during execution.

psWrites Number of database writes during execution

psFetches Number of database fetches during execution

psDeltaMemory Different in server memory used before and after query execution.

6.13 Stale Reference Checks

It is possible to execute a query with a different transaction to that which was used to prepare the
query. If the transaction used to prepare the query is committed or rolled back before the query is
executed then there is a risk that the Binary Language Representation (BLR) of the compiled query

will be out-of-date when it is executed with undefined results.

Issue 1.11

71

Firebird Pascal API (fbintf) Guide

The stale reference check by default prevents this from happening by raising an exception if a

guery is executed and the transaction used to prepare the query is no longer active.

In some cases where it is known to be unlikely that the database schema will change between
preparing a query and executing it and there is a performance penalty from keeping the “prepare
transaction” active, it is possible to modify the default behaviour and to suspend the stale reference

check.

The IStatement methods:

are used to respectively enable/disable the stale reference check, and to determine if the stale

procedure SetStaleReferenceChecks(Enable:boolean); {default true}
function GetStaleReferenceChecks: boolean;

reference check is currently enabled.

6.14 Reference

IStatement = interface

function GetMetaData: IMetaData; {Output Metadata}
function GetSQLParams: ISQLParams;{Statement Parameters}
function GetPlan: AnsiString;
function GetRowsAffected(var SelectCount, InsertCount,
UpdateCount, DeleteCount: integer): boolean;

function GetSQLStatementType: TIBSQLStatementTypes;
function GetSQLText: AnsiString;
function GetSQLDialect: integer;
function IsPrepared: boolean;
function IsInBatchMode: boolean;
function HasBatchMode: boolean;
procedure Prepare(aTransaction: Itransaction=nil); overload;
procedure Prepare(CursorName: AnsiString;

aTransaction: ITransaction=nil); overload;
function Execute(aTransaction: ITransaction=nil): IResults;
function OpenCursor(aTransaction: ITransaction=nil): IResultSet; overload;
function OpenCursor(Scrollable: boolean;

aTransaction: ITransaction=nil): IResultSet; overload;

function AddToBatch(ExceptionOnError: boolean=true): TStatusCode;
function ExecuteBatch(aTransaction: ITransaction=nil): IBatchCompletion;
procedure CancelBatch; function GetAttachment: IAttachment;
function GetTransaction: ITransaction;
procedure SetRetainInterfaces(avalue: boolean);
procedure EnableStatistics(avalue: boolean);
function GetPerfStatistics(var stats: TPerfCounters): boolean;
function GetBatchCompletion: IBatchCompletion;
function GetBatchRowLimit: integer;
procedure SetBatchRowLimit(aLimit: integer);
procedure SetStaleReferenceChecks(Enable:boolean); {default true}
function GetStaleReferenceChecks: boolean;
property MetaData: IMetaData read GetMetaData;
property SQLParams: ISQLParams read GetSQLParams;
property SQLStatementType: TIBSQLStatementTypes read GetSQLStatementType;

end;
Method Description
GetMetaData Returns an interface to the query metadata.
GetSQLParams Returns an interface to the query parameters

72

Working with Dynamic SQL

Method Description

GetPlan Returns the query plan

GetRowsAffected Returns the number of rows affected by the last query execution,
analysed by query type.

GetSQLStatementType Returns the SQL Statement Type

GetSQLText Returns the SQL Statement as plain text

IsPrepared Returns true if the query is still in its prepared state

IsinBatchMode See 6.10.4

HasBatchMode See 6.10.4

Prepare Reprepare a query, optionally with a different transaction, and/or
Cursor Name (ignored if not a select query).

Execute Execute a non-select query

OpenCursor Executes a select query and returns the results set. If “scrollable”
is true then a bi-directional cursor is opened (if supported by the
Firebird Server).

Note: scrollable cursors are only supported for local databases at
present (Firebird limitation).

AddToBatch Called to save the current set of SQL parameter values. Starts
batch mode when first called. Will raise an exception on error
unless called with an argument of false.

Returns the IB Error Code (0 on success).
ExecuteBatch Executes the query applying all saved SQL parameter value sets.

On completion, the batch context is cleared. Returns the Batch
Completion status.

CancelBatch

Cancels the current batch context and discards all saved SQL
parameter value sets.

GetAttachment

Returns a reference to the connection used by the statement

GetTransaction

Returns a reference to the transaction used to prepare the query

Issue 1.11

73

Firebird Pascal API (fbintf) Guide

Method Description
SetRetaininterfaces See 6.11
EnableStatistics See 6.12
GetPerfStatistics See 6.12
GetBatchCompletion See 6.10.3
GetBatchRowLimit See 6.10.2
SetBatchRowLimit See 6.10.2
SetStaleReferenceChecks See 6.13
GetStaleReferenceChecks See 6.13

74

Working with Blob Data

Working with Blob Data

Binary Large Obijects (Blobs) are containers for almost unlimited amounts of binary data held within
a Firebird Database. In practice, Blobs are limited by the database architectural limits and available
disk storage but, perhaps the most important point is that their individual size limit is not part of the
metadata.

Blobs can be created and written outside of the handling of SQL Statements. Once created, a Blob
is given a unigue, database generated, identifier which can be stored in a database column and
with a different value for each row. This identifier is composed of two four byte non-negative
integers and is given the type name ISC_QUAD.

A Blob is normally accessed by reading a database row, retrieving the ISC_QUAD identifier and
then using this to read the Blob itself. The Blob field is updated by creating a new one and
assigning its ISC_QUAD identifier to the field* and committing the change to the database. Blobs
do not have to be explicitly deleted as Blobs that are not referenced from any table or active
transaction are automatically removed as part of database garbage collection.

Text mode Blobs can also be read and written to using the ISQLData.AsString and

ISQLParam.AsString properties and without the need to use the IBlob interface. However, there
are issues with the latter case (see 9.6).

7.1 Blob MetaData

7.1.1 Output Metadata

With reference to 6.3.2, if a database column in the output metadata (IColumnMetaData) has an
SQLType of SQL_BLOB then the column is defined as a Blob.

The SQLSubType is valid for Blob columns and identifies the type of data stored in the Blob. A
subtype of “1” is always text, while “0” is undefined data. Other values can have database specific

3The instance of a column value in each row is referred to here as a “field”.

Issue 1.11 75

Firebird Pascal API (fbintf) Guide

interpretations. For text Blobs, the IColumnMetaData.getCharSetID method returns the Firebird
Character Set ID for the text data“.

The IColumnMetaData.GetBlobMetaData method may also be used to return additional metadata
for the Blob accessed using the IBlobMetaData interface:

IBlobMetaData = interface
function GetSubType: integer;
function GetCharSetID: cardinal;
function GetCodePage: TSystemCodePage;
function GetSegmentSize: cardinal;
function GetRelationName: AnsiString;
function GetColumnName: AnsiString;
end;

Most of this information is already provided via the IColumnMetaData. Only the segment size is
unigue to this interface. This interface is inherited by the IBlob interface (see 7.2).

7.1.2 Input Metadata

The ISQLParam interface (see 6.3.1) will identify when the parameter type is Blob (SQLType =
SQL_BLOB), and gives its sub type and character set id. However, it is not possible at this point to
see the full Blob Metadata.

7.2 The IBlob Interface

A Blob is accessed, read and written, using the IBlob Interface:

IBlob = interface(IBlobMetaData)

function GetBPB: IBPB;

procedure Cancel;

procedure Close;

function GetBlobID: TISC_QUAD;

function GetBlobMode: TFBBlobMode;

function GetBlobSize: Int64;

procedure GetInfo(var NumSegments: Int64; var MaxSegmentSize,

TotalSize: Int64; var BlobType: TBlobType);

function Read(var Buffer; Count: Longint): Longint;

function Write(const Buffer; Count: Longint): Longint;

function LoadFromFile(Filename: AnsiString): IBlob;

function LoadFromStream(S: TStream) : IBlob;

function SaveToFile(Filename: AnsiString): IBlob;

function SaveToStream(S: TStream): IBlob;

function GetAsString: rawbytestring;

procedure SetAsString(avalue: rawbytestring);

function SetString(aValue: rawbytestring): IBlob;

function GetAttachment: IAttachment;

function GetTransaction: ITransaction;

property AsString: rawbytestring read GetAsString write SetAsString;
end;

Note that the IBlob interface inherits from IBlobMetaData and hence Blob metadata is also available through
the IBlob interface.

Blobs of all subtypes can be read and written to as strings. For anything other than subtype 1
(text), the string is simply raw data. For text Blobs, transliteration may take place when assigning to

4Note that this is not necessarily the character set used to store the Blob. If the database connection has a default
character set defined then this will take precedence and the Blob text is returned using this character set, unless the Blob
character set is “none” or “octets”.

76

Working with Blob Data

the AsString property if the source string has a different code page to the one defined for the Blob

in its metadata.

Blobs may be read from or written to files and TStream descendents.

7.2.1 IBlob Reference

Method Description

GetBPB Returns the BPB, if any, used to create/open the Blob

Cancel Cancels the creation of a new blob. The IBlob interface should
not be used after a call to this method and any further use is
undefined.

Close Completes the creation of a new blob. The Blob may not be
written to after a call to Close.

GetBlobID Returns the BlobID assigned to the Blob

GetBlobMode Returns read or write (fomRead,fomWrite)

GetBlobSize Returns the current size of the Blob in bytes as held within the
database (undefined for Blobs in write mode).

GetlInfo Returns basic Blob information from the server (undefined for
Blobs in write mode).

Read Read the requested number of bytes from the Blob, starting at
the current position. May return fewer bytes if less than the
requested number remain.

Write Append the buffer contents to the Blob.

LoadFromFile

Opens and copies (appends) all data from the file to the Blob
(write mode only)

LoadFromStream As above, but reads from a stream

SaveToFile Creates the specified file and copies all data from the Blob to the
file (read mode only).

SaveToStream As above, but copies to a stream.

GetAsString Returns a string containing all data from the Blob. If the Blob

subtype is 1 (text), the string's code page will be set to match the
character set of the Blob, otherwise the code page is CP_NONE.

Issue 1.11

77

Firebird Pascal API (fbintf) Guide

Method Description

(read mode only).

SetAsString Writes (appends) all data in the string to the Blob. If the Blob
subtype is 1 (text), transliteration may take place if the string's
code page is different from that required for the Blob. (write mode

only).
GetAttachment Returns the database IAttachment interface for the Blob
GetTransaction Returns the transaction used to create/open the Blob.

7.3 Reading Blob Data

When a dataset's column has an SQL Type of SQL_BLOB and the field in the current row is non-
null, then the ISQLData's AsBlob property (see 6.5) may be used to access the Blob using the
IBlob interface. For example, assuming that MyTable has an integer RowID column and a Blob
column named MyBlobColumn:

var theResults: IResultSet;
theBlob: IBlob;

begin
MyStatement := MyAttachment.Prepare(MyTransaction,
'Select MyBlobColumn,RowID From MyTable Where RowID < ?');
MyStatement.SQLParams[Q@].AsInteger := 10;
theResults := MyStatement.OpenCursor;
while theResults.FetchNext do
begin
theBlob := theResults[0].AsBlob;
theBlob.SaveToFile('someFileName' + theResults[1].AsString);
end;
theResults.Close;

This example iterates through the result set comprising all rows with a RowlID less than 10 and
writes out the Blob data to a file with a filename form from constant text plus the RowlID value.

Note that an alternative method exists for accessing a Blob using the IAttachment.OpenBlob method.

function OpenBlob(transaction: ITransaction; RelationName,
ColumnName: AnsiString; BlobID: TISC_QUAD; BPB: IBPB=nil): IBlob;

This method accesses a Blob and returns an IBlob interface to it provided that the Relation (Table)
Name, Column Name and the BloblID is known. The BlobID is returned using the
ISQLData.AsQuad property This method allows for Blob IDs to be read and stored for later use,
opening the Blob only when required.

7.4 Creating or Modifying a Blob
As indicated above, the API user cannot check the ISQLParam to determine the correct character

set id for text blobs when assigning a new blob to a field. Instead, an appropriate Blob has to be
created using a priori knowledge. A Blob is created using the IAttachment.CreateBlob method:

78

Working with Blob Data

function CreateBlob(transaction: ITransaction; RelationName,
ColumnName: AnsiString; BPB: IBPB=nil): IBlob; overload;
function CreateBlob(transaction: ITransaction;
BlobMetaData: IBlobMetaData; BPB: IBPB=nil): IBlob; overload;
function CreateBlob(transaction: ITransaction; SubType: integer;
CharSetID: cardinal=0; BPB: IBPB=nil): IBlob; overload;

Three variations are defined which differ in the way that the Blob data type is specified. The first
variant provides a relation (i.e. table) name and a column name in that table. Database metadata is
then looked up and used to create a Blob of a type compatible with the column definition.

The second variant achieves the same but provides the Blob metadata directly as an
IBlobMetaData interface. This variant is useful when a Select Statement has already been
prepared for the table in which the Blob is to be assigned and hence the metadata is already
available client side. The IBlobMetaData interface is obtain by calling the
IColumnMetaData.GetBlobMetaData method.

The third variant defines the Blob directly by specifying the required subtype and, for subtype 1
(text), the character set id.

Note that the Blob Parameter Block (BPB) is only required when a Blob Filter is also specified (see 7.6).

Once a Blob has been created, data can be written to the Blob and the Blob identifier assigned to a
field in a database table. For example:

var MyBlob: IBlob;
MyStatement: IStatement;
begin
MyBlob := MyAttachment.CreateBlob(MyTransaction, 'MyTable', 'MyBlobColumn');
MyBlob.LoadFromFile('path to source file');
MyStatement := MyAttachment.Prepare(MyTransaction,

'Update MyTable Set MyBlobColumn = ? Where RowID = ?');
MyStatement.SQLParams[@].AsBlob := MyBlob;
MyStatement.SQLParams[1].AsInteger := 1;

MyStatement.Execute;

In the above example, a compatible Blob is created for the MyBlobColumn in MyTable, and its
contents loaded from a file. An Update SQL Statement is then used to save the newly created blob
in the database.

Note that it is important that the same transaction is used to both create the blob and to execute the update
statement.

7.5 Removing a Blob

An existing Blob is simply removed by either replacing it with a new Blob in an update statement,
or using an Update Statement to set the field to NULL.

7.6 Using Blob Filters

Blob Filters may be used to convert a Blob from one data type to another. As described in the
InterBase 6.0 API Guide, there are both built-in and user defined Blob Filters. A Blob Filter is
requested by providing a Blob Parameter Block (BPB) when the Blob is Opened or Created:

Issue 1.11 79

Firebird Pascal API (fbintf) Guide

IBPB = interface

function getCount: integer;

function Add(ParamType: byte): IBPBItem;

function getItems(index: integer): IBPBItem;

function Find(ParamType: byte): IBPBItem;

property Count: integer read getCount;

property Items[index: integer]: IBPBItem read getItems; default;
end;

An empty BPB is returned using the IAttachment.AllocateBPB method and, as shown above,
follows the same approach as the IDPB and ITPB interfaces (see 13.2.2.3). Each parameter in the
BPB is access using the IBPBItem interface:

IBPBItem = interface (IParameterBlockItem) end;

Only four parameters are currently defined for the BPB. Their symbolic constants and use is
described below:

Parameter Type Interpretation
isc_bpb_target_type integer The subtype identifier for the result of the
conversion.
isc_bpb_target_interp integer When the target subtype is 1 (text), this identifies

the target character set id.

isc_bpb_source_type Integer The subtype identifier for the source data

isc_bpb_source_interp Integer When the source subtype is 1 (text), this identifies
the source character set id.

When a Blob Filter is defined for the CreateBlob method, the source sub type should be
appropriate for the data written to the Blob. The target sub type should be compatible with the Blob
column.

Blob Filters can also be used when a Blob is read from the database. In this case, it is not possible
to use the ISQLData.AsBlob property to get the Blob interface as this provides no means to set a
BPB. Instead the ISQLData.GetAsBlob method must be used:

function GetAsBlob(BPB: IBPB): IBlob;

This method also returns an IBlob interface, but with the requested Blob Filter used to read and
convert the Blob Data.

7.7 Inline Blobs

A Firebird Blob is stored in separate database pages from the table from which it is referenced.
Only the Quad word BlobID is stored in the database column. Normally, a blob is saved to the
database as a separate interaction to the update/insert used to save the table row from which the
blob is referenced. The blob is saved, the Blobid returned and this is used as the column value.
This incurs a significant extra overhead and sometimes for relatively small amounts of data. Often

80

Working with Blob Data

a blob is used to store (e.g.) plain text that can vary in size from a single sentence to a complete
book.

Firebird does not require that the SQL type of a query parameter matches the SQL Type of the
column being updated. The query will succeed as long as the data can be converted to the
column's SQL Type. For example, a numeric value can be passed as a string and then converted
to an actual numeric when it reaches the server.

This feature is exploited by the Firebird Pascal API to support inline blobs. Here, an inline blob is
simply a text string. The parameter's .SetAsString method is used to set the value of a Blob column
to a string variable. The string text is then passed to the server when the update/insert is executed
and converted to a blob on receipt. Even binary blobs can be handled in this way - these are
transferred to the server using the OCTETS string type to avoid any transliteration issues.

For example, consider a table defined by:

Create Table BLOBTEST(
Rowid integer not null,
MyText Blob sub_type 1,
Primary Key (Rowid)

);

and with the following insert statement:

INSERT INTO BLOBTEST(Rowid,MyText) Values(:Rowid, :MyText);

The following pascal code inserts a row using an inline blob for MyText:

var Statement: IStatement;
{assume that MyAttachment and MyTransaction exist and have been correctly created}
begin
Statement := MyAttachment.Prepare(myTransaction, 'the above insert statement');
Statement.SQLParams.ByName('Rowid').AsInteger := 1;
Statement.SQLParams.ByName('MyText').AsString 'This is a test';
Statement.Execute;

Note: From Firebird 4.0 onwards, the underlying Firebird API also provides an inline blob capability specific
to batch updates. This is not the same as the above mechanism.

If the text is longer than 8192 bytes (default) then the API will create a blob on your behalf and
save the blob id as the column value. This is to avoid excessively large messages. This default can
be overridden using the IAttachment.SetlnlineBlobLimit method (see 4.12).

Note: Firebird imposes a maximum string length of 32KB. Inline blobs can be problematic with segmented
blobs.

Issue 1.11 81

Working with Array Data

Working with Array Data

Firebird also supports arrays, where an array column is defined as a multi-dimensional table of a
single data type with well defined bounds on each dimension. Each row may contain a different
array of values.

The implementation of arrays closely follows that of Blobs, such that an array can be understood
as a structured Blob, where the structure is that of the array. A user could implement their own
arrays using Blobs, or use the built in support.

8.1 Array Metadata

Array metadata is available for each column that has an SQLType of SQL_ARRAY. The array
metadata interface is returned by the IColumnMetaData.GetArrayMetaData method and is:

TArrayBound = record
UpperBound: short;
LowerBound: short;
end;
TArrayBounds = array of TArrayBound;

IArrayMetaData = interface
function GetSQLType: cardinal;
function GetSQLTypeName: AnsiString;
function GetScale: integer;
function GetSize: cardinal;
function GetCharSetID: cardinal;
function GetTableName: AnsiString;
function GetColumnName: AnsiString;
function GetDimensions: integer;
function GetBounds: TArrayBounds;

end;

Array metadata is arguably more useful than Blob metadata and provides the information that
defines the array, including the SQL data type of each array element, the scale for fixed point data

Issue 1.11 83

Firebird Pascal API (fbintf) Guide

types and the character set id and size for text type. It also identifies the number of dimensions in
the array and the bounds for each dimension.

It is also possible to create an IArrayMetadata from supplied parameters using
IAttachment.CreateArrayMetaData.

8.2 The IArray Interface

An array of data values is accessed using the IArray interface.

IArray = interface(IArrayMetaData)
function GetArrayID: TISC_QUAD;
procedure Clear;
function IsEmpty: boolean;
procedure PreLoad;
procedure CancelChanges;
procedure SaveChanges;
function GetMetaData: IArrayMetaData;
function GetAsInteger(index: array of integer): integer;
function GetAsBoolean(index: array of integer): boolean;
function GetAsCurrency(index: array of integer): Currency;
function GetAsInt64(index: array of integer): Int64;
function GetAsDateTime(index: array of integer): TDateTime;
procedure GetAsDateTime(index: array of integer; var aDateTime: TDateTime;
var dstOffset: smallint; var aTimezoneID: TFBTimeZoneID); over load;
procedure GetAsDateTime(index: array of integer; var aDateTime: TDateTime;
var dstOffset: smallint; var aTimezone: AnsiString); overload;
procedure GetAsTime(index: array of integer; var aTime: TDateTime;
var dstOffset: smallint; var aTimezoneID: TFBTimeZonelD;
OnDate: TDateTime); overload;
procedure GetAsTime(index: array of integer; var aTime: TDateTime;
var dstOffset: smallint; var aTimezone: AnsiString;
OnDate: TDateTime); overload;
function GetAsUTCDateTime(index: array of integer): TDateTime;
function GetAsDouble(index: array of integer): Double;
function GetAsFloat(index: array of integer): Float;
function GetAsLong(index: array of integer): Long;
function GetAsShort(index: array of integer): Short;
function GetAsString(index: array of integer): AnsiString;
function GetAsVariant(index: array of integer): Variant;
function GetAsBCD(index: array of integer): tBCD;
procedure SetAsInteger(index: array of integer; AValue: integer);
procedure SetAsBoolean(index: array of integer; AValue: boolean);
procedure SetAsCurrency(index: array of integer; Value: Currency);
procedure SetAsInt64(index: array of integer; Value: Inté64);
procedure SetAsDate(index: array of integer; Value: TDateTime);
procedure SetAsLong(index: array of integer; Value: Long);
procedure SetAsDateTime(index: array of integer; Value: TDateTime);
procedure SetAsDateTime(index: array of integer; aValue: TDateTime;
aTimeZoneID: TFBTimeZoneID); over load;
procedure SetAsDateTime(index: array of integer; aValue: TDateTime;
aTimeZone: AnsiString); overload;
procedure SetAsTime(index: array of integer; Value: TDateTime); overload;
procedure SetAsTime(index: array of integer; aValue: TDateTime;
OnDate: TDateTime; aTimeZoneID: TFBTimeZoneID); overload;
procedure SetAsTime(index: array of integer; aValue: TDateTime;
OnDate: TDateTime; aTimeZone: AnsiString); overload;
procedure SetAsUTCDateTime(index: array of integer; aUTCTime: TDateTime);
procedure SetAsDouble(index: array of integer; Value: Double);
procedure SetAsFloat(index: array of integer; Value: Float);
procedure SetAsShort(index: array of integer; Value: Short);
procedure SetAsString(index: array of integer; Value: AnsiString);
procedure SetAsVariant(index: array of integer; Value: Variant);
procedure SetBounds(dim, UpperBound, LowerBound: integer);
function GetAttachment: IAttachment;

84

Working with Array Data

function GetTransaction: ITransaction;
procedure AddEventHandler (Handler: TArrayEventHandler);
procedure RemoveEventHandler(Handler: TArrayEventHandler);

end;

This interface provides the getters and setters for array elements of each data type available for
arrays. In this case, each getter and setter requires an index that is an array of integers, with one
integer for each dimension. The order in which the integers are provided is the same as in which
the bounds are described in the metadata. Automatic type conversion takes place whenever types
are compatible and follows the same rules as for ISQLData and ISQLParam. lArray inherits from

IArrayMetaData.
Additionally:
Method Description

GetArraylD Returns the internal array ID. This is an ISC_QUAD (see Blobs).
Any changes will be saved at this point.

Clear Re-initialises the array to an empty array

ISEmpty Returns true if the array is empty; an array is empty when it is first
created or after a call to “clear”.

PreLoad Normally an array only reads its data from the database the first

time a getter method is called. PreLoad forces a database read
before any getter method is called.

CancelChanges

Cancel any unsaved changes and restores the array to its initial
state (new arrays) or refreshes the array from the database.

SaveChanges Forces a write to the database of any changes to the array.
SetBounds Restricts the IArray to a subrange of the array held in the database.
GetAttachment Returns the database IAttachment interface for the Blob
GetTransaction Returns the transaction used to create/open the Blob.
AddEventHandler See 8.7

RemoveEventHandler See 8.7

8.3 Reading Array Data

Array data is read from the database in much the same way as blob data.

Issue 1.11

85

Firebird Pascal API (fbintf) Guide

When a dataset's column has an SQL Type of SQL_ARRAY and the field in the current row is non-
null, then the ISQLData's AsArray property (see 6.5) may be used to access the array using the
IArray interface. For example, assuming that MyTable has an integer RowlID column and an array
column named MyArrayColumn, for an one dimensional array of integers:

var theResults: IResultSet;
theArray: IArray;
Bounds: TArrayBounds;
i,j: integer;
begin
MyStatement := MyAttachment.Prepare(MyTransaction,
'Select MyArrayColumn,RowID From MyTable Where RowID < ?');
MyStatement.SQLParams[Q] .AsInteger := 10;
theResults := MyStatement.OpenCursor;
while theResults.FetchNext do
begin
theArray := theResults[0].AsArray;
if theArray.GetDimensions = 1 then
begin
Bounds := theArray.GetBounds;
for i := Bounds[0].LowerBound to Bounds[O].UpperBound do
write('(',1,': ',theArray.GetAsString([i]),"') ');
writeln;
end;
end;
theResults.Close;

The above will write out all array values and their index. Although an integer array is assumed for
the example, the above should work for all array types that can be converted to strings.

Note that an alternative method exists for accessing an array using the IAttachment.OpenArray method.

function OpenArray(transaction: ITransaction;
RelationName, ColumnName: AnsiString; ArrayID: TISC_QUAD): IArray;

This method accesses an array and returns an IArray interface to it provided that the Relation
(Table) Name, Column Name and the ArraylID is known. The ArraylID is returned using the
ISQLData.AsQuad property This method allows for ArrayID to be read and stored for later use,
opening the array only when required.

8.4 Creating or Modifying an Array

The API user cannot use the ISQLParam interface to determine array metadata. Instead, an
appropriate array has to be created using a priori knowledge. An array is created using the
IAttachment.CreateArray method:

function CreateArray(transaction: ITransaction; RelationName,
ColumnName: AnsiString): IArray; overload;
function CreateArray(transaction: ITransaction;
ArrayMetaData: IArrayMetaData): IArray; overload;

Two variations are defined which differ in the way that the array metadata is identified. The first
variant provides a relation (i.e. table) name and a column name in that table. Database metadata is
then looked up and used to create an array of a type compatible with the column definition.

The second variant achieves the same but provides the array metadata directly as an

IArrayMetaData interface. This variant is useful when a Select Statement has already been
prepared for the table in which the array is to be assigned and hence the metadata is already

86

Working with Array Data

available client side. The IArrayMetaData interface is obtain by calling the
IColumnMetaData.GetArrayMetaData method.

Once an array has been created, data can be written to the array and the array identifier assigned
to a field in a database table. For example:

var MyArray: IArray,
MyStatement: IStatement;
begin
MyArray := MyAttachment.CreateArray(MyTransaction, 'MyTable', 'MyArrayColumn');
MyArray.SetAsInteger([0],1);
{other array element values may also be assigned here}

MyStatement := MyAttachment.Prepare(MyTransaction,

'Update MyTable Set MyArrayColumn = ? Where RowID = ?');
MyStatement.SQLParams[Q].AsArray := MyArray;
MyStatement.SQLParams[1].AsInteger := 1;

MyStatement.Execute;

In the above example, a compatible array is created for the MyArrayColumn in MyTable, and its
element values assigned. An Update SQL Statement is then used to save the newly created array
in the database.

Note that it is important that the same transaction is used to both create the array and to execute the update
statement.

8.5 Reducing Array Bounds

If only a small subrange of a very large array needs to be accessed or modified, the IArray
interface provide the SetBounds method to reduce the amount of data transferred between client
and servier.

procedure SetBounds(dim, UpperBound, LowerBound: integer);

This method may be called once per dimension in order to reduce the upper and/or lower bounds
of the array. This does not change the definition of the array in the database or its metadata. It just
reduces the range in which the IArray operates.

A call to SetBounds always re-initialises the array and writes out any changes before it is actioned.
It is therefore important that it is called on an lArray before any element is read or modified, or the
PreLoad method is called. Otherwise, it will only increase data transfer overhead instead of
reducing it.

8.6 Removing an Array

An existing array is simply removed by either replacing it with a new array in an update statement,
or using an Update Statement to set the field to NULL.

8.7 Event Handlers

One or more event handlers may be registered with a given |Array so that modifications to the
array can be reported to other parts of your application. The AddEventHandler method registers a
new event handler, while the RemoveEventHandler method will remove it from the list of event
handlers.

Issue 1.11 87

Firebird Pascal API (fbintf) Guide

Each event handler must be a typed procedure as follows:

TArrayEventReason = (arChanging, arChanged);
TArrayEventHandler = procedure(Sender: IArray;
Reason: TArrayEventReason) of object;

As implied by the Event Reason parameter, the event handler is called once before a change is
applied and once after it is applied.

88

Working with Character Sets

Working with Character Sets

Ideally all applications and databases would work with the same universal character set (e.g.
UTF8). However, while increasingly this is true, there will always be exceptions due to legacy
databases and applications, and to handle characters that are for one reason or another outside of
UTF8.

A Firebird Database can specify a wide range of character sets for character and text mode blob
columns. A client application can choose to read each column in its native character set or to have
the Firebird Client library transliterate on its behalf.

Furthermore, from FPC 3.0.0 onwards, FPC AnsiStrings have their code page as a property of the

string (see http://wiki.freepascal.org/FPC_Unicode_support#DefaultSystemCodePage), where the
code page identifies the character set held by the string (e.g. UTF8, ASCII, WIN1252, etc).

The Firebird Pascal APl aims to ensure that the AnsiString code page for strings returned by the
database API is appropriate for the text data received from the database. When strings are written
to the database, the API again aims to ensure that, if necessary, text strings are transliterated from
the string data's code page to the character set expected by the database.

9.1 Firebird Character Sets

Mainly for legacy reasons, Firebird supports a wide range of character sets including UTF8, ASCII,
ISO 8859 variants, Cyrillic, Chinese, Thai, Korean and Japanese character sets. It also supports
two untyped character sets: NONE and OCTETS. Firebird character sets either have a fixed byte
width of one (e.g. ASCII) or a variable byte width (UTF8 characters can be up to four bytes in
length). Fixed two byte character sets, such as UTF16, are not supported. The character set
determines both text data semantics and collation ordering.

The character sets supported by a Firebird database can be listed by the query:

Select RDB$CHARACTER_SET_NAME, RDB$CHARACTER_SET_ID
from RDB$CHARACTER_SETS order by 2

Issue 1.11 89

http://wiki.freepascal.org/FPC_Unicode_support#DefaultSystemCodePage

Firebird Pascal API (fbintf) Guide

When a database is created, a default character set for the database is also defined. This is the
character set used for fixed and variable length text and text mode Blobs unless a different
character set is explicitly given when a column's data type is defined or updated.

9.2 Character Set Usage
There are at least 3 ways that character sets are used in Firebird:

1. There is the default database character set. That is specified when you create the database
and is used as the default character set when you define a text column. Firebird 3 has
introduced an ALTER DATABASE DEFAULT CHARACTER SET statement that allows you
to change this. However, changing the current default character set does not affect any
existing column.

2. There is the character set specified for each text column. The character set is normally the
default character set when the column is defined, but a different character set can be given.

3. There is the (optional) connection character set specified when you connect to a database.
It is only available when you connect to a database. It is not available with the services API.

9.3 The Database Connection and the Default Character Set

Connections to Firebird databases may also have a default character set defined. This does not
have to be the same character set as that defined when the database was created. When a
connection default character set is defined, all text data in the database is returned in that
character set, transliterating if necessary. The only exception is for database columns with a
character set of NONE or OCTETS. In this case transliteration never occurs.

Likewise, all data sent to the database is expected to be in the connection default character set
and may, if necessary, be transliterated when it is saved if the target column's character set is
different.

A connection default character set is defined by adding an isc_dpb_Ic_ctype parameter to the DPB
used to connect to the database, and setting its value to the character set name. The character set
name must be a character set name recognised by Firebird. e.g.

MyDPB.Add(isc_dpb_lc_ctype).AsString := 'UTF8';
When no default connection character set is defined then all text is returned in whatever character
set is stored in the database. No transliteration takes place. Similarly, all data sent to the database
is assumed to be in the correct character set.
Note that if the text data sent to the database contains invalid byte sequences for the column's character set

or the default connection character set, if any, then a Database Engine error will be raised indicating a
transliteration error.

9.4 Code Pages

The term “code page” refers to the character set and associated collation rules used for an entire
application or for each string processed by the application.

FPC from 3.0.0 onwards associates a code page with each AnsiString. The default is usually
UTFS8, referred to by the symbolic constant CP_UTF8. Many other code pages exist including the

90

Working with Character Sets

CP_NONE code page which is used for untyped string data. AnsiStrings carry the codepage with
them. It is also possible to transliterate a string from one code page to another if necessary.

In Lazarus, it is generally advisable to keep to UTF8 as many LCL routines implicitly assume
UTFS.

9.5 Transliteration Rules

For all text columns including text mode Blobs, the IColumnMetadata provides the character set
applicable to the text and the associated code page. The character set will be either:

* The connection default character set, or

e Character set 0 (NONE) or 1 (OCTETS), when the original column has a character set of
NONE or OCTETS

« The character set used to define the column, if no connection default character set is
specified.

The code page indicated in the IColumnMetadata is always the code page associated with the
Firebird Character Set. The IAttachment interface provides a set of functions that can be used to
guery the mapping table between the two. i.e.

function GetCharsetName(CharSetID: integer): AnsiString;
function CharSetID2CodePage(CharSetID: integer;

var CodePage: TSystemCodePage): boolean;
function CodePage2CharSetID(CodePage: TSystemCodePage;

var CharSetID: integer): boolean;
function CharSetName2CharSetID(CharSetName: AnsiString;

var CharSetID: integer): boolean;

function CharSetwWidth(CharSetID: integer; var Width: integer): boolean;

When a string is returned from the Firebird Pascal API (e.g. using ISQLData.AsString), the string's
code page will be set to the code page given by the column metadata.

When a string is assigned to a field using the Firebird Pascal API (e.g. using ISQLParam.AsString),
the string's code page is compared with that specified in the column metadata. If they are different
then the string is transliterated into the code page specified by the column metadata before it is
transferred to the database.

Note that the Firebird Character Set “NONE” is mapped to codepage CP_ACP i.e. the default ANSI code

page, while the character set “OCTETS” is mapped to codepage CP_NONE. The former reflects the fact it
occurs typically in legacy databases where the system default character set is assumed, while the latter is
used for untyped binary data.

9.6 Text Blob Handling

Text Mode Blobs generally behave the same as fixed length and variable length text columns in
respect of character sets, code pages and transliteration. The Blob metadata identifies both the
character set and code page used to transfer the Blob.

However, when Blob Filters are used for text mode Blobs, no transliteration takes place regardless

of the code page of the string or database column. If you use a Blob Filter for a text mode Blob, the
API assumes that you know what you are doing.

Issue 1.11 91

Firebird Pascal API (fbintf) Guide

9.7

User Defined Character Sets

Firebird also permits additional user defined character sets to be defined. Typically, these are
character sets supported by the ICU (International Components for Unicode) but not included by
default in the Firebird distribution. The procedures for adding support for such a character set are
outside of the scope of this document. However:

An entry in Firebird's intl.conf must exist for the user defined character set, and

the stored procedure sp_register character_set provided in most Firebird distributions
under misc/intl,sql must be wused to add the character set name to the
RDB$CHARACTER_SETS (system) table.

When no default database character set is used, the Firebird Pascal Client API also needs to know
about the user character set so that it can be properly related to a system code page. This is
performed using the IAttachment.RegisterCharSet procedure.

This must called after a connection to a database using a user defined character set has been
opened and before any queries executed. The procedure requires the following parameters:

CharSetName The case insensitive name of the character set and used to locate

the character set in the system table.

CodePage The System Code Page that corresponds to the character set.

AllowReverselLookup If true then the specified code page can be used to lookup the

character set name and character width. This can be useful when
multiple character sets map to the same code page.

On completion, the procedure returns the assigned (by Firebird) character set id for the user
defined character set, in the “charsetid” output parameter.

92

Handling Error Conditions

Handling Error Conditions

Except for the exceptions discussed below, the Firebird Pascal Client API handles all errors by

throwing an exception. This may be an EIBClientError exception or an EIBInterBaseError
exception.

EIBError = class(EDatabaseError)

private
FSQLCode: Long;

public
constructor Create(ASQLCode: Long; Msg: AnsiString);
property SQLCode: Long read FSQLCode;

end;

{ EIBInterBaseError - Firebird Engine errors}

EIBInterBaseError = class(EIBError)
private
FIBErrorCode: Long;
public
constructor Create(Status: IStatus); overload;
constructor Create(ASQLCode: Long; AIBErrorCode: Long; Msg: AnsiString);
overload;

property IBErrorCode: Long read FIBErrorCode;
end;

{IB Client Exceptions}
EIBClientError = class(EIBError);

The EIBInterBaseError exception is used to report errors returned by the Firebird Database
Engine, while the EIBClientError is used to report Firebird Pascal Client API exceptions.
EIBClientError is also used by IBX for Lazarus.

For an EIBInterBaseError exception, the SQLCode property corresponds to the SQL Error Code
defined for the Firebird error, and the IBErrorCode property corresponds to the Firebird
EngineCode. Symbolic names for each defined Firebird EngineCode may be found in the
IBErrorCodes unit.

Issue 1.11 93

Firebird Pascal API (fbintf) Guide

10.1 Exceptional Error Handling Cases

The IFirebirdAPI methods OpenDatabase and CreateDatabase by default also return exceptions
on error. However, these two calls also have an optional paramters RaiseExceptionOnError. By
default this is true. If set to false, then the methods return silently on error and return a nil interface
pointer.

In this case, the error can still be identified and handled using the IStatus interface.

10.2 The IStatus Interface

The IStatus interface is returned from a call for the GetStatus method of the IFirebirdAPI. It is
defined as:

IStatus = interface
function GetIBErrorCode: Long;
function Getsqlcode: Long;
function GetMessage: AnsiString;
function CheckStatusVector (ErrorCodes: array of TFBStatusCode): Boolean;
function GetIBDataBaseErrorMessages: TIBDataBaseErrorMessages;
procedure SetIBDataBaseErrorMessages(Value:
TIBDataBaseErrorMessages);
end;

The GetlBErrorCode and Getsglcode methods can be used to query the Firebird Engine Code
and SQL Error Code returned by the last Firebird Client API call, and GetMessage can be used to
guery the text version of the error.

It is also possible to raise a EIBInterBaseError exception from an IStatus interface by the following
code:

var Status: IStatus;

Status := FirebirdAPI.GetStatus;
raise EIBInterBaseError.Create(Status);

The IStatus interface can also be used to customise the error message returned, using the
IStatus.SetIBDataBaseErrorMessages method. This can be used to set any combination of:

TIBDataBaseErrorMessage = (ShowsQLCode,
ShowIBMessage,
ShowSQLMessage) ;

* ShowSQLCode adds the integer value of the SQL Error Code.

* ShowSQLMessage adds the text message associated with the SQL Error Code.

* ShowlBMessage adds the Engine Code plus the error message corresponding to
the EngineCode.

By default the generated error message contains all parts.
10.2.1 Deprecation of SQL Error Code
The SQL Error Code is likely to be deprecated in Firebird after Firebird 4 with only the IB Error

Messages being available. The ShowSQLCode and ShowSQLMessage options will be silently
ignored when SQL Error codes are not supported by a Firebird Client library.

94

Working with Events

Working with Events

Firebird Events are alerts raised outside of the normal process flow and are generated from the
Firebird Procedure and Trigger Language using the “POST_EVENT” PSQL Statement.
POST_EVENT queues a name alert which is sent to all active database clients which have
registered to receive that alert.

11.1 The IEvents Interface

The IEvents interface is used to register for one or more named events and to wait either
synchronously or asynchronously for the event.

IEvents = interface
procedure GetEvents(EventNames: TStrings);
procedure SetEvents(EventNames: TStrings); overload;
procedure SetEvents(EventName: AnsiString); overload;
procedure Cancel;
function ExtractEventCounts: TEventCounts;
procedure WaitForEvent;
procedure AsyncWaitForEvent(EventHandler: TEventHandler);
function GetAttachment: IAttachment;

end;

An IEvents interface is returned by IAttachment.GetEventHandler

function GetEventHandler(Events: TStrings): IEvents; overload;
function GetEventHandler(Event: AnsiString): IEvents; overload;

Two variants of GetEventHandler are provided, creating an event handler for either one named
event or for a list of events. Although an IEvents interface is created for one or more named
events, the events on which the interface is waiting can be modified at any time using
IEvents.SetEvents.

Issue 1.11 95

Firebird Pascal API (fbintf) Guide

11.2 Asynchronous Event Handling

Creating an IEvents interface does not of itself cause the client to register for any events. This only
happens when the caller explicitly waits for an event. To wait for an event asynchronously, the
AsyncWaitForEvent method is called specifying an event callback with the type:

TEventHandler = procedure(Sender: IEvents) of object

AsyncWaitForEvent always returns immediately. When an alert is received from the database
server for any of the named events handled by the IEvents, the event handler callback is called.

Note: the callback will occur within a different thread to the application main thread. It is the responsibility of
the programmer to ensure that proper inter-thread communication takes place. This may include the use of
TThread.Synchronize in order to process the alert within the main thread, or to use thread synchronisation
mechanisms such as Critical Sections.

When a callback procedure is called, it should, at some point call IEvents.ExtractEventCounts to
determine which event has been posted and, if necessary to check the event counts.
IEvents.ExtractEventCounts returns a TEventCounts array, with one element for each event.
TEventInfo = record
EventName: AnsiString;
Count: integer;
end;

TEventCounts = array of TEventInfo;
For each event, a counter is returned giving the number of times the event has been seen on this
connection. An increased event count from the last callback indicates that the named event has
been raised.

AsyncWaitForEvent is a “one shot”. Once a callback has occurred, another call to
AsyncWaitForEvent must be made in order to wait for more events.

AsyncWaitForEvent can be cancelled using the IEvents.Cancel method.

Changing the event names using IEvents.SetEvents is also an implicit Cancel and
AsyncWaitForEvent should be called after changing the set of event names.

11.3 Synchronous Event Handling

The IEvents interface also supports a synchronous wait with the calling thread becoming blocked
until an alert is received. It is unlikely that this will ever be used in an application's main thread, but
may be appropriate for multi-threaded applications.

The IEvents.WaitForEvent method is used for a synchronous wait and returns only when an alert is
raised. IEvents.ExtractEventCounts must still be used to check which event was raised.

IEvents.Cancel should allow a separate thread to cancel a synchronous wait.

96

Working with Services

Working with Services

The Service Manager allows you to perform database maintenance tasks such as database
backup and restore, shutdown and restart, garbage collection, and scanning for invalid data
structures. It also supports creating, modifying, and removing user entries in the security database,
and requesting information about the configuration of databases and the server. As with attaching
to a database, attaching to a Service Manager requires a Service Parameter Block (SPB).

12.1 The Service Parameter Block (SPB)

An SPB is allocated using the IFirebirdAPI.AllocateSPB method and has the usual set of methods
for a parameter block (see 13.2.2.3):

ISPB = interface

function getCount: integer;

function Add(ParamType: byte): ISPBItem;

function getItems(index: integer): ISPBItem;

function Find(ParamType: byte): ISPBItem;

property Count: integer read getCount;

property Items[index: integer]: ISPBItem read getItems; default;
end;

This interface follows the pattern established for the DPB (see 13.2.2.3), with the Add method used

to add a new item, a Find method to locate an existing item and the means provided to enumerate
a SPB. The ISPBItem is subclass of the IParameterBlockitem interface (see 13.2.2.3):

ISPBItem = interface(IParameterBlockItem) end;

For example:

Issue 1.11 97

Firebird Pascal API (fbintf) Guide

var MySPB: ISPB;

begin
MySPB := FirebirdAPI.AllocateSPB;
MySPB.Add(isc_spb_user_name).AsString := 'SYSDBA';
MySPB.Add(isc_spb_password).AsString := 'masterkey';

This example creates an SPB and adds a user name and password to the SPB. This provides the
login credentials. The login user must have sufficient privilege to use the Service Manager for the

intended purpose.

12.2 Attaching to the Service Manager

A connection is established with the Service Manager on a given Firebird Server using the
IFirebirdAPIl.GetServiceManager method:

function GetServiceManager (ServerName: AnsiString; Protocol: TProtocol;

SPB: ISPB): IServiceManager; overload;

function GetServiceManager (ServerName: AnsiString; Port: AnsiString;

Protocol: TProtocol; SPB: ISPB): IServiceManager; overload;

This method requires the name of the server, the protocol use to connect to the server and the
SPB. Alternative (and largely historical) protocols to TCP are discussed in the InterBase 6.0 API
Guide. In most cases, the protocol should be set to TCP, and the Server Name is the server's
domain name. An overloaded variant allows the caller to specify a non-default port number if

necessary.

The IFirebirdAPl.GetServiceManager method returns an IServiceManager interface:

IServiceManager = interface

function
function
function
function
function

getFirebirdAPI: IFirebirdAPI;
getSPB: ISPB;

getServerName: AnsiString;
getProtocol: TProtocol;
getPortNo: AnsiString;

procedure Attach;
procedure Detach(Force: boolean=false);

function
function
function
function
function

function

end;

IsAttached: boolean;
AllocateSRB: ISRB;
AllocateSQPB: ISQPB;
Start(Request: ISRB; RaiseExceptionOnError: boolean=true): boolean;
Query(SQPB: ISQPB; Request: ISRB; RaiseExceptionOnError:

boolean=true) :IServiceQueryResults; overload;

Query(Request: ISRB;

RaiseExceptionOnError: boolean=true) :IServiceQueryResults; overload;

12.2.1 IServiceManager Reference

Method Name Description
getFirebirdAPI Returns the IFirebirdAPI that provided the IServiceManager
getSPB Returns the SPB used to attached to the service manager
getServerName Returns the attached Server Name
getProtocol Returns the connection protocol

98

Working with Services

getPortNo Returns the port number (or symbolic name) used to connect to
the server.

Attach Reattach to the service manager

Detach Detach from the service manager

IsAttached Returns true if a connection exists to the service manager

AllocateSRB Returns an empty Service Request Block (SRB)

AllocateSQPB

Returns an empty Service Query Parameter Block (SQPB)

Start Starts the service requested by the SRB. By default, this will raise
an exception if an error is found. If RaiseExceptionOnError is
false, the function returns false on error and the FirebirdAPI status
may be used to determine the actual error.

Query Queries an active service, or requests information from the server,

or sets properties. By default, this will raise an exception if an
error is found. If RaiseExceptionOnError is false, the function
returns nil on error and the FirebirdAPI status may be used to
determine the actual error.

12.3 Starting a Service

A service is started using the IServiceManager.Start method and by providing an appropriate
Service Request Block (SRB). The SRB specifies the service to run and any parameters needed.

The method returns when the service is started or raises an exception if it is unable to start the

requested service.

12.3.1 The Service Request Block (SRB)

An empty SRB is created by the IServiceManager.AllocateSRB method, which returns an ISRB

interface to the SRB.

ISRB = interface

function getCount: integer;

function Add(ParamType: byte): ISRBItem;

function getItems(index: integer): ISRBItem;

function Find(ParamType: byte): ISRBItem;

property Items[index: integer]: ISRBItem read getItems; default;

end;

This follows the same approach for creating and maintaining parameter blocks as used for other
parameter blocks, such as the DPB (see 13.2.2.3). New SRB items are added using the Add

Issue 1.11

99

Firebird Pascal API (fbintf) Guide

method and can be returned by type using the find method. The SRB items may also be
enumerated using the Items property. An SRB item is accessed using the ISRBItem interface,
which is a subclass of the IParameterBlockltem interface (see 13.2.2.3)

ISRBItem = interface(IParameterBlockItem) end;

For example:

Req := Service.AllocateSRB;
Req.Add(isc_action_svc_backup); {Request the backup service}

Req.Add(isc_spb_dbname).AsString := 'MyDatabase'; {this is assumed to be an
alias}

Req.Add(isc_spb_bkp_file).AsString := '/home/backups/mydatabase.gbk';

try

Service.Start(Req);

starts a backup service and requests that “MyDatabase” on “MyServer” is backed up to the file
‘'home/backups/mydatabase.gbk’ on the server.

12.3.2 List of Services
The following services may be started on the Service Manager. In each case, the service is

requested by creating an SRB, adding the symbolic constant for the service (no value), and then
adding each parameter (and parameter value) as specified for the service.

Service Parameters Purpose
isc_action_svc_display_user List active users
isc_action_svc_db_stats isc_spb_dbname, Requesting Database Statistics

isc_spb_options

isc_action_svc_backup isc_spb_dbname, Database backup
isc_spb_bkp_file,
isc_spb_bkp_length,
isc_spb_bkp_factor,
isc_spb_options,
isc_spb_verbose

isc_action_svc_restore isc_spb_dbname, Database Restore
isc_spb_bkp_file,
isc_spb_res_length,
isc_spb_res_buffers,
isc_spb_res_page_size,
isc_spb_res_access_mode,
isc_spb_options,
isc_spb_verbose

See the InterBase 6.0 API Guide for a detailed description of each parameter and parameter value

100

Working with Services

12.4 Querying a Service

The IServiceManager.Query method is used to either:
* Query a running service (e.g. a database backup)
* Request information from the service manager.
* Set Database or Server Properties.

Two variants of the IServiceManager.Query method are provided. One provides both a Service
Query Parameter Block (SQRB) and a Service Request Block (SRB). The other requires only an
SRB. Both variants return an interface to the Service Query Results (SQR). The SQRB is often not
required and hence a variation is defined that omits it from the interface.

12.4.1 The Service Query Parameter Block (SQRB)

The Service Query Parameter Block (SQRB) follows the standard pattern for parameter blocks
(see Error: Reference source not found), and is defined as:

ISQPB = interface

function getCount: integer;

function Add(ParamType: byte): ISQPBItem;

function getItems(index: integer): ISQPBItem;

function Find(ParamType: byte): ISQPBItem;

property Count: integer read getCount;

property Items[index: integer]: ISQPBItem read getItems; default;
end;

ISQPBItem = interface(IParameterBlockItem)
function CopyFrom(source: TStream; count: integer): integer;
end;

Note that the ISQPBItem interface extends the standard IParameterBlockltem interface to include a
CopyFrom (stream) method.

There are only two current uses for the SQPB:

1. An SQPB which includes anisc_info_svc_timeout parameter is used to provide a timeout
(in seconds and encoded as an integer) to limit the response time for a Query. The query
returns within this time if it cannot otherwise complete.

2. An SQPB which includes an isc_info_svc_line parameter is used to return data (in
successive chunks) for the service's stdin. The parameter value provides the data as a long
string (up to 65535 bytes), although in practice as the whole buffer is limited to 65535
bytes, the actual string length must be reduced to take account of the parameter byte,
length field and any isc_info_svc_timeout parameter and value.

The latter case is used for database restore (see 12.6). The CopyFrom method provides a
potentially more convenient way of setting the string value from a TStream. This method is used to
set the value of an isc_info_svc_line parameter as up to “count” bytes” read from the current
stream position (zero implies the maximum possible). It returns the actual number of bytes written.
The CopyFrom method will always try and maximise the use of the parameter buffer and will use
up all remaining space.

Issue 1.11 101

Firebird Pascal API (fbintf) Guide

12.4.2 The Service Request Block (SRB)

If a service has already been started and is still active then the SRB is used to request information
from the service. Otherwise, it is used to request information or to set database or server
properties.

The Service Request Block (SRB) follows the standard pattern for parameter blocks (see Error:
Reference source not found), and is defined as:

ISRB = interface

function getCount: integer;

function Add(ParamType: byte): ISRBItem;

function getItems(index: integer): ISRBItem;

function Find(ParamType: byte): ISRBItem;

property Count: integer read getCount;

property Items[index: integer]: ISRBItem read getItems; default;
end;

ISRBItem = interface(IParameterBlockItem) end;

12.4.2.1 Running Services

Service Request Information Requested
List Users isc_info_svc_get _users A list of active users
Database Statistics isc_info_svc_line Returns the next line of (plain

text) output from the database
statistics service

Database Backup isc_info_svc_line The next line of (plain text)
output from the database
backup service (backup to
server file only)

isc_info_svc_to_eof The next chunk of the backup
archive (backup to stdout only).

Database Restore isc_info_svc_line The next line of (plain text)
output from the database
restore service

isc_info_svc_stdin The maximum acceptable byte
count to return as stdin data.

12.4.2.2 Information Requests

Information Group Request Information Returned

Version Information isc_info_svc_version The version of the Services

102

Working with Services

Manager

isc_info_svc_server_version The version of the Firebird
server

isc_info_svc_implementation The implementation string, or
platform, of the server

Configuration Parameters isc_info_svc_get env_lock The location of the Firebird lock
manager file on the server

isc_info_svc_get_config Contents of Firebird.conf

isc_info_svc_get_env Location of the Firebird root
directory on the server

isc_info_svc_get_env_msg Location of the Firebird
messages file on the server.

isc_info_svc_user_dbpath Location of the security
database on the server

Database Information isc_info_svc_svr_db_info The number of database
attachments and databases
currently active on the server

Limbo Transactions isc_info_svc_limbo_trans Limbo transaction information
for unresolved distributed
transactions

12.4.2.3 Setting Properties

These requests correspond to the options of the gfix command line utility and are described in the
InterBase 6.0 APl Guide Table 12.5

12.4.3 The Query Response
The Query method, on successful completion, returns an IServiceQueryResults interface to the

Service Query Response. This can be enumerated to determine and process the query results.
This interface is defined as:

Issue 1.11 103

Firebird Pascal API (fbintf) Guide

IServiceQueryResults = interface
function getCount: integer;
function getItem(index: integer): IServiceQueryResultItem;
function find(ItemType: byte): IServiceQueryResultItem;
property Items[index: integer]: IServiceQueryResultItem
read getItem; default;
property Count: integer read getCount;
end;

The main use of this interface is to process “Count” items in turn. However, it may also be used to
locate (find) a specific response item by its symbolic constant. Each response item is return as an
IServiceQueryResultltem interface.

IServiceQueryResultSubItem = interface
function getItemType: byte;
function getSize: integer;
procedure getRawBytes(var Buffer);
function getAsString: AnsiString;
function getAsInteger: integer;
function getAsByte: byte;
function CopyTo(stream: TStream; count: integer): integer;
property AsString: AnsiString read getAsString;
property AsInteger: integer read getAsInteger;
property AsByte: byte read getAsByte;

end;

IServiceQueryResultItem = interface(IServiceQueryResultSubItem)
function getCount: integer;
function getItem(index: integer): IServiceQueryResultSubItem;
function find(ItemType: byte): IServiceQueryResultSubItem;
property Items[index: integer]: IServiceQueryResultSubItem
read getItem; default;
property Count: integer read getCount;
end;

Each guery response may either be a single value (for a given response type) or may itself be a list
of values. This is reflected in the IServiceQueryResultitem interface where the response may either
be accessed using the getters for the (sub) item type or itself enumerated for “sub items”.

The responses that may be expected for each service request are identified in the InterBase 6.0
API Guide. Appendix B provides an example of the enumeration of a service response. The

CopyTo method applies to string item types only and writes the contents of the string to the
supplied stream.

12.5 Detaching from the Service Manager
The Service Manager connection is automatically closed when the service manager interface goes

out of scope. It may also be explicitly closed by called the Detach method. In the latter case, the
Attach method may be called to reconnect to the service manager.

12.6 Backup and Restore Services

Database backup and restore may be performed either to or from a file on the server, or to and
from a file on the client system.

104

Working with Services

12.6.1 Backup and Restore on the Server

Backup and restore to or from a file on the server is the simple case. All that is necessary is to
specify the name of the database and backup file(s) and to monitor the output of the process until
completion. For example, for backup:

var SPB: ISPB;
Service: IServiceManager;
Req: ISRB;
Results: IserviceQueryResults;
Response: IServiceQueryResultSubItem;
line: AnsiString;
begin
SPB := FirebirdAPI.AllocateSPB;
SPB.Add(isc_spb_user_name).setAsString('SYSDBA');
SPB.Add(isc_spb_password).setAsString('masterkey');
Service := FirebirdAPI.GetServiceManager('myserver domain name', TCP, SPB);

Req := Service.AllocateSRB;
Req.Add(isc_action_svc_backup);

Req.Add(isc_spb_dbname).AsString := 'MyDatabase';
Req.Add(isc_spb_bkp_file).AsString := 'path to backup file';
Req.Add(isc_spb_verbose);

try

Service.Start(Req);
Req := Service.AllocateSRB;
Req.Add(isc_info_svc_line);

repeat
line = '';
Results := Service.Query(Req);
Response := Results.Find(isc_info_svc_line);
if Response <> nil then
begin
line := Response.AsString;
writeln(line);
end;

until line = '';
writeln('Backup Complete');
except on E: Exception do
writeln('Backup Service Error: ', E.Message);
end;
end;

The above example, starts the service and then loops round issuing queries until there is no
response. Database restore follows the same pattern.

12.6.2 Backup and Restore using a File on the Client System

In principle, this is the same as the above except that the backup file is set to 'stdout' (for backup)
or 'stdin’ for restore. The client additionally has to process the stdout data or to provide the stdin
data.

The stdout data for backup is provided by the isc_info_svc_to_eof request item. This is mutually
exclusive with verbose output. The following example illustrates how backup to stdout is
processed.

var SPB: ISPB;
Service: IServiceManager;
Req: ISRB;
Results: IServiceQueryResults;
Response: IServiceQueryResultSubItem;

Issue 1.11 105

Firebird Pascal API (fbintf) Guide

bakfile: TFileStream;
bytesWritten: integer;
begin
SPB := FirebirdAPI.AllocateSPB;
SPB.Add(isc_spb_user_name).setAsString('SYSDBA');
SPB.Add(isc_spb_password).setAsString('masterkey');
Service := FirebirdAPI.GetServiceManager('myserver domain name', TCP, SPB);

bakfile := TFileStream.Create('path to backup file',K fmCreate);
Req := Service.AllocateSRB;
Req.Add(isc_action_svc_backup);

Req.Add(isc_spb_dbname).AsString := 'MyDatabase';
Req.Add(isc_spb_bkp_file).AsString := 'stdout';
try

Service.Start(Req);
Req := Service.AllocateSRB;
Req.Add(isc_info_svc_to_eof);

repeat
bytesWritten := 0;
Results := Service.Query(Req);
Response := Results.Find(isc_info_svc_to_eof);

if Response <> nil then
bytesWritten := Response.CopyTo(bakfile,0);
until (bytesWritten = 0) and (Results.Find(isc_info_svc_timeout) = nil);
writeln('Backup Complete');
except on E: Exception do
begin
writeln('Backup Service Error: ',6E.Message);
bakfile.free;
DeleteFile('path to backup file');
end;
end;
bakfile.free;
end;

Restore to stdin is more complex and requires use of the Service Query Parameter Block to upload
the data, as shown in the following example:

var SPB: ISPB;
Service: IServiceManager;
Req: ISRB;
Results: IServiceQueryResults;
bakfile: TFileStream;
bytesWritten: integer;
bytesAvailable: integer;
i: integer;
ReqLength: integer;
SQPB: ISQPB;
begin
SPB := FirebirdAPI.AllocateSPB;
SPB.Add(isc_spb_user_name).setAsString('SYSDBA');
SPB.Add(isc_spb_password).setAsString('masterkey');
Service := FirebirdAPI.GetServiceManager('myserver domain name', TCP,SPB);

bakfile := TFileStream.Create('path to backup file', fmOpenRead);
bytesAvailable := BakFile.Size;
Req := Service.AllocateSRB;
Req.Add(isc_action_svc_restore);
Req.Add(isc_spb_dbname).AsString := 'MyDatabase';
Req.Add(isc_spb_bkp_file).AsString := 'stdin';
Req.Add(isc_spb_verbose);
Req.Add(isc_spb_options).SetAsInteger(isc_spb_res_create);
try

ReqLength := 0;

repeat

SQPB := Service.AllocateSQPB;

106

if ReqLength > 0 then
bytesWritten :=

Working with Services

SQPB.Add(isc_info_svc_line).CopyFrom(BakFile, ReqLength);

bytesAvailable -= bytesWritten;

Req := Service.AllocateSRB;
Req.Add(isc_info_svc_stdin);
Req.Add(isc_info_svc_1line);

Results := Service.Query(SQPB,Req);

{Now process the query response}
for 1 := @ to Results.Count - 1 do
case Results[i].getItemType of
isc_info_svc_stdin:
ReqLength := Results[i].AsInteger;
isc_info_svc_line:
writeln(Results[i].AsString);
end;

until (ReqLength = Q) ;

writeln('Local Restore Complete');

except on E: Exception do

begin

writeln('Restore Service Error: ',6E.Message);
bakfile.free;

end;

end;

bakfile.free;

end;

Issue 1.11

107

Deployment Guidelines

Deployment Guidelines

The fbintf package is compiled into your application and does not itself require any special
procedures for deployment on operational systems. However, it does depend on the availability of
the Firebird Client library or the Firebird embedded server. This chapter provides guidelines on
how to distribute Firebird with your application. This necessarily differs between platforms, and
between Firebird Versions.

13.1 Deployment on Windows

Probably the simplest approach is just to require the installation of Firebird from the distribution
package provided on http://www.firebirdsgl.org. Indeed, this is the recommended approach for a
development system. However, this can be simplified and use of an embedded server requires
special consideration.

13.1.1 Firebird 2.5 and Earlier
13.1.1.1 Firebird Client Only

This is the simplest case where your application will be running on a client system accessing a
database on a remote server. In this case, all you need to do is to install, in the same folder as
your application is installed, the following Firebird files:

* fbclient.dll
» firebird.msg
* firebird.conf

These are typically found in the “C:\Program Files\Firebird_2_x" folder and its “bin” subfolder (when
installing from the standard Firebird distribution). Note: the three files must be in the same folder as
the application executable if fbintf is to find them. The firebird.conf should be unmodified and as
originally distributed.

Issue 1.11 109

http://www.firebirdsql.org/

Firebird Pascal API (fbintf) Guide

The advantages of this deployment are that your application distributable is minimised and avoids
the stealth upgrade problem should the Firebird installation be upgraded unexpectedly and to an
incompatible version.

13.1.1.2 The Embedded Firebird Server

If your application is a Personal Database Application. That is, the database resides on the same
system as your application, it is single user, intended to be accessible only to its owner, and a
separate database login is seen as unnecessary, then the Firebird embedded server should be
used when the application is deployed.

The Firebird embedded server may be downloaded from http://www.firebirdsgl.org as a single zip
archive. The contents of this archive should be installed in the same folder as your application
executable. fbintf will then automatically find and load the embedded Firebird Server.

13.1.2 Firebird 3.0 and Later

Firebird 3.0 has introduced the concept of “plugins”. Plugins can determine various capabilities
and, in particular, whether an installation is client only or includes the embedded server. There is
no separate distributable for the Firebird Embedded Server.

13.1.2.1 Firebird Client Only

As with Firebird 2.5 and earlier, the same basic files are required, and copied from the Firebird
distribution zip to your application's installation folder:

* fbclient.dll
» firebird.msg
¢ firebird.conf

However, the firebird.conf file will need to be edited to reflect the plugins provided. In a minimal
configuration, the “Providers” parameter line will need to be edited to ensure that the “enginel2”
plugin is removed i.e.

Providers = Remote,Loopback

The AuthClient parameter line should also reflect the authentication plugins installed. If the server
is known to be Firebird 3, then this can be reduced to:

AuthClient = Srp (or SRP256 for Firebird 3.0.5 or later)

Finally, subfolder should be created for your application install folder and called “plugins” as a
minimum, this should contain the “srp.dll” file copied from the Firebird distribution zip.

13.1.2.2 Firebird Embedded Server

If your application is a Personal Database Application. That is, the database resides on the same
system as your application, it is single user, intended to be accessible only to its owner, and a
separate database login is seen as unnecessary, then the Firebird embedded server should be
used when the application is deployed.

In Firebird 3.0, the key difference is that, in addition to what has been described above for a client

installation, the “enginel2.dll” should also be copied to the “plugins” subfolder and the
(firebird.conf) Providers Parameter line should be:

110

http://www.firebirdsql.org/

Deployment Guidelines

Providers = Remote,Enginel2,Loopback

However, for a working installation, additional files will be required from the Firebird Distribution
zZip.

« All “conf’, “.dat” and “.dllI” files should be copied from the top level zip folder to your
application's installation folder.

e ‘“udr_engine.conf” and “udr_engine.dll” should be copied from the “plugins” folder in the
Firebird Distribution zip to the “plugins” subfolder in your application's installation folder.

 The “intl” and “udf’ folders in the Firebird Distribution zip should be copied to your
application's installation folder.

13.1.3 Firebird 4 and later

The time zone data files must also be present in server and embedded server deployments. These
are placed in the tzdata folder under the application's installation folder.

Optionally, the time zone database may also be included in a client only installation. However, this
is not, in general, necessary (see C.4.5). If the time zone database is included then the

application's installation folder should also include all DLLs and “.dat” files in the Firebird
distribution with the prefix “icu”.

13.2 Deployment on Linux

As with Windows, probably the simplest approach is just to require the installation of Firebird from
the distribution package provided on http://www.firebirdsgl.org. However, Firebird usually comes as
a package and as part of your Linux Distribution and use of these packages is the recommended
approach.

13.2.1 Firebird 2.5 and Earlier

13.2.1.1 Firebird Client only

Your application installation should require the installation of the libfbclient2 package (debian) or
the libfbclient.so.2 rpm (Fedora).

13.2.1.2 Firebird Embedded Server

Your application installation should require the installation of the libfbembed2.5 package (debian)
or the firebird-libfbembed rpm (Fedora).

13.2.2 Firebird 3.0 and Later
13.2.2.1 Firebird Client Only

Your application installation should require the installation of the libfbclient2 package (debian) or
the libfbclient2 rpm (Fedora).

Issue 1.11 111

http://www.firebirdsql.org/

uses Classes, Sysutils, IBUtils;

TMyClass = class
private
procedure HandleOnJnlEntry(JnlEntry: TJInlEntry);
procedure PrintTPB(TPB: ITPB);
public
procedure PrintJournalFile(aFileName: AnsiString);
end;

procedure TMyClass.PrintJournalFile(aFileName: AnsiString);
begin
writeln('Journal Entries');
with TJournalProcessor.Create do
try
Execute(aFileName, FirebirdAPI, Hand1leOnJnlEntry);
finally
Free
end;
end;

procedure TMyClass.HandleOnJnlEntry(JnlEntry: TJInlEntry);
begin
with JnlEntry do
begin
{$IFNDEF FPC}
writeln('Journal Entry = ',ord(JnlEntryType), '(',
TJournalProcessor.JnlEntryText (JnlEntryType), ')");
{$ELSE}
writeln('Journal Entry = ',JInlEntryType, '(',
TJournalProcessor.JnlEntryText (JnlEntryType), ')");

{$ENDIF}
writeln('Timestamp = ', FBFormatDateTime('yyyy/mm/dd hh:nn:ss.zzzz',6 Timestamp));
writeln('Session ID = ', SessionID);
writeln('Transaction ID = ', TransactionID);
case JnlEntry.JnlEntryType of
jeTransStart:
begin
writeln('Transaction Name = "', TransactionName, '"');
PrintTPB(TPB);

{$IFNDEF FPC}
writeln('Default Completion = ',ord(DefaultCompletion));
{$ELSE}
writeln('Default Completion = ', DefaultCompletion);
{$ENDIF}

end;

jeQuery:
begin
writeln('Query = ', QueryText);
end;

jeTransCommitRet,
jeTransRollbackRet:
writeln('Old TransactionID = ',OldTransactionID);
end;
end;
writeln;
end;

procedure TMyClass.PrintTPB(TPB: ITPB);

var i: integer;

begin
writeln('TPB: Item Count = ', TPB.getCount);
for 1 := 0 to TPB.getCount - 1 do

begin
write(' ',TPB[i].getParamTypeName);
if TPB[i].AsString <> '' then
writeln(' = ', TPB[i].AsString)
else
writeln;
end;
writeln;
end;

Figure 1: Example Class Create to print out a Journal File

112

Deployment Guidelines

13.2.2.2 Firebird Embedded Server

Your application installation should require the installation of the firebird3.0-server-core package
(debian) or the firebird-3.0.1 rpm or later (Fedora).

Note that under Debian, the full server is not installed as this additionally requires the firebird3.0-
server package.

13.2.2.3 Firebird 4

The above recommendations should be followed but using the Firebird 4 equivalent packages
instead.

Issue 1.11 113

Client Side Journaling

Client Side Journaling

Client side journaling creates a per database attachment file recording each read/write transaction
start and end, and each SQL query that modifies data in the database. It can optionally record
each read only transaction and queries that do not modify data (e.g. select queries).

The purpose of client side journaling is:

1. To create a transaction and query log that can be used to recover from a lost database
connection or server crash, and/or

2. To provide a record of database activity for debugging purposes.

14.1 Using Client Side Journaling

Client side journaling is controlled through the following IAttachment functions:

{Journaling options. Default is [joReadWriteTransactions, joModifyQueries] }

TJournalOption = (joReadOnlyTransactions, joReadWriteTransactions,
joModifyQueries, joReadOnlyQueries, joNoServerTable);

TJournalOptions = set of TJournalOption;

function JournalingActive: boolean;
function GetJournalOptions: TJournalOptions;
function StartJournaling(aJournallLogFile: AnsiString): integer; overload;
function StartJournaling(aJournallLogFile: AnsiString;

Options: TJournalOptions): integer; overload;
function StartJournaling(S: TStream; Options: TjournalOptions

): integer; overload;

procedure StopJournaling(RetainJournal: boolean);

Call StartJournaling to enable journaling to the specified file.

* The Options determine the scope of the journaling.

Issue 1.11 115

Firebird Pascal API (fbintf) Guide

* By default, only read/write transactions and queries that modify the database data are
journaled. This can be extended to include read only and other queries by specifying an
appropriate set of options.

* Include joNoServerTable in the options if journaling is for debugging only.

If JoNoServerTable is not included in the Options then when the function is called, a unique session
id is returned by the function (see 14.4.2). Otherwise, the Session ID is always -1.

When StopJournaling is called, or the attachment closed, the journal file is closed. If RetainJournal
is false then the Journal File is deleted.

Note: StopJournaling is called implicitly when the database connection is closed or the database dropped:

» If the database connected is closed as a result of the interface going out of scope the RetainJournal
is true

¢« On a Forced disconnection, RetainJournal is true.

« If the database connection is closed by DropDatabase then RetainJournal is false.

14.2 Journal File Syntax

The journal file is a text file and is intended to be human readable. Each record in the journal starts
with an asterisk and is terminated by a line separator. Each record is identified by a single
character immediately after the asterisk, followed by a timestamp, session id and transaction id.

Note that the timestamp uses the current default format settings for shortdate and longtime, to a precision of
a 10" millisecond.

The following records are defined:

14.2.1 Transaction Start:

*S:<date/time>,<session id>,<transaction no.>,<string length>:<transaction
Name>,<string length>:<TPB>,6<default Completion>

This journal entry records when ITransaction.StartTransaction is called (explicitly or implicitly). It
additionally records:

* The transaction number as returned by Firebird
* A Local Transaction Name as specified when the ITransaction interface is created.

* The Transaction Parameter Block (TPB) in text format, and
* the default completion (Rollback (0) or Commit(1)).

14.2.2 Transaction Commit :

*C:<date/time>,<session id>,<transaction no.>
This journal entry records when ITransaction.Commit is called (explicitly or implicitly).

14.2.3 Transaction Commit retaining :

*c:<date/time>,<session id>, <transaction no.>,<old transaction no.>

This journal entry records when ITransaction.CommitRetaining is called.

116

Client Side Journaling

14.2.4 Transaction Rollback:
*R:<date/time>, <session id>,<transaction no.>
This journal entry records when ITransaction.Rollback is called (explicitly or implicitly).
14.2.5 Transaction Rollback retaining:
*r:<date/time>,<session id>, <transaction no.>,<old transaction no.>
This journal entry records when ITransaction.RollbackRetaining is called.

14.2.6 Updatelinsert/iDelete

*Q:<date/time>,<session id>,<transaction no.>,<length of query text in bytes>:<query
text>

This journal entry records a query execution. The query text is the original SQL query with the

parameter names or placeholders substituted with the literal value of each parameter. In the case
of binary blobs and arrays, the TIBXScript syntax is used to encode the value as text.

14.3 Reading the Journal File

The journal is intended to be both human and machine readable. In order to support programmatic
parsing of the journal file, the class TJournalProcessor may be found in the IBUtils unit. Figure 1
above provides an example of a class used to format a journal file.

Issue 1.11 117

Firebird Pascal API (fbintf) Guide

14.4 Using a Journal File for Failure Recovery

It is possible to read and replay a journal file in order to repeat the activity on a transaction that has
been otherwise lost. However, there will always be an uncertainty about whether the last
transaction commit recorded in the journal was applied on the server prior to the crash.

In order to remove this uncertainty, a server side database table is used to record actual
transaction completion and may be used to resolve any ambiguity during recover. This table
(IBX$JOURNALS) is used when joNoServerTable is not present in the Journal File Options.

14.4.1 Database Scheme Dependencies

The following table and generator must be present in the database in order to support journaling
when joNoServerTable is not present in the Journal File Options:

Create Table IBX$JOURNALS(
IBX$SessionID Integer not null,
IBX$TransactionID Integer not null,
IBX$0ldTransactionID Integer,
IBX$USER VarChar(32) Default CURRENT_USER,
IBX$TIMESTAMP TIMESTAMP Default CURRENT_TIMESTAMP,
Primary Key(IBX$SessionID,IBX$TransactionID)

);
CREATE SEQUENCE IBX$SESSIONS;

If these tables are not present when journaling is enabled, the client will attempt to create the
tables. However, it is recommended that they are created as part of the database schema in order
to avoid having to give potentially every client table creation privilege.

14.4.2 Use of IBX$JOURNALS and IBX$SESSIONS

* When the StartJournaling function is called, a unique session id is obtained using the
database's IBX$SESSIONS generator. The session id is returned as the result of the
function. It is used for all IBX$JOURNAL rows inserted for the current session.

« If RetainJournal is false when StopJournaling is called, the IBX$JOURNALS entry for the
current session is removed.

* On transaction start: A row in the IBX$JOURNALS table is created with the session id and
transaction no as its primary key. The row is created using the newly started transaction
and will only become visible to other transactions once the transaction is committed. The
idea is that this entry can be used to determine if a transaction in the journal file has or has
not been fully committed to the database.

* On Transaction Commit Retaining: A new IBX$JOURNALS entry is made recording both
the new transaction no. and the old transaction no. Note that while the context is retained, a
new transaction is otherwise started following a commit retaining, and has a new
transaction no.

* On Transaction Rollback Retaining: A new IBX$JOURNALS entry is made recording both
the new transaction no. and the old transaction no. Note that while the context is retained, a
new transaction is otherwise started following a commit retaining, and has a new
transaction no.

118

Client Side Journaling

14.4.3 Use of the IBX$JOURNALS Table for Recovery

When a transaction is committed, the corresponding row for the transaction becomes visible to
other users and is now permanently present until explicitly removed. This provides a clear
indication that the transaction successfully completed and all changes were committed to the
database.

Correspondingly, if a transaction is recorded in the journal file and, even if this includes a
Transaction Commit, the absence of the corresponding row in the IBX$JOURNALS table implies
that the transaction had not successfully completed at the time of the failure and should be
repeated using the journaled activity for that transaction.

Issue 1.11 119

Firebird Pascal API (fbintf) Guide

Parameter Blocks

Many of the Firebird API calls require the use of parameter blocks in order to pass the various
parameters and options that the user may set. These include:

* The Database Parameter Block (DPB)

e The Transaction Parameter Block (TPB)

* The Service Parameter Block (SPB)

* The Service Request Block (SRB)

* The Service Query Parameter Block (SQRB)
e The Blob Parameter Block (BPB).

Each has a slightly different format with, for example, variations in the way that integers and strings
are encoded, and with no obvious pattern. The fbintf aims to hide these differences and to present
a standard approach to the user.

In the fbintf, parameter blocks are managed opaquely through an interface. An API call is provided
to provide an interface to an initially empty parameter block and it is then possible to add
parameters to the block and where necessary give a parameter a value. The original symbolic
constants defined in the InterBase 6.0 APl Guide are used when adding a parameter to a
parameter block. In Firebird, each parameter is said to be encoded as a “clumplet”.

It is possible to enumerate all parameters in a block or to find a parameter by its symbolic constant.
The current value of a parameter can also be read.

Given the variations in encoding, each type of parameter block has its own strongly typed
interface, whilst providing the same functions except for the return types. A generic is used to
define the basic interface which is then specialized for each parameter block. However, in order to
improve the readability of the interface, each parameter block interface described in this document
is presented in its expanded form.

The Parameter Block Interface

The Database Parameter Block (DPB) is used here as an example and is defined as:

120

Parameter Blocks

IDPB = interface

function getCount: integer;

function Add(ParamType: byte): IDPBItem;

function getItems(index: integer): IDPBItem;

function Find(ParamType: byte): IDPBItem;

procedure Printbuf;

property Count: integer read getCount;

property Items[index: integer]: IDPBItem read getItems; default;
end;

* The getCount method returns the number of items in the block.

* The Add method adds a new parameter item and returns an interface to it.

* The getltems method accesses and returns an interface to a parameter by position (in the
order the parameters are added.

* The Find method returns an interface to a parameter by parameter type and returns nil if
the requested parameter is not found.

* PrintBuf is a debugging aid that formats and prints to stdout (using writelns) the output
buffer as hex bytes.

The interface returned to a parameter block item is also strongly typed and is different for each
parameter block. The IDPBItem interface is defined as:

IDPBItem = interface(IParameterBlockItem) end;
That is it's a simple subclass of the generic IParameterBlockltem interface.
The IParameterBlockitem Interface

This is the ancestor for all parameter block item interfaces as is defined as:

IParameterBlockItem = interface

function getParamType: byte;

function getAsInteger: integer;

function getAsString: AnsiString;

function getAsByte: byte;

procedure setAsString(avValue: AnsiString);

procedure setAsByte(aValue: byte);

procedure SetAsInteger(aValue: integer);

property AsString: AnsiString read getAsString write setAsString;

property AsByte: byte read getAsByte write setAsByte;

property AsInteger: integer read getAsInteger write SetAsInteger;
end;

The interface's methods should be intuitively understood from their names.

* The getParamType method returns the value of the symbolic constant used to “add” the
parameter.

* There are “getters” and “setters” for integer, byte and string values, as well as
corresponding properties.

A subclass, such as IDPBItem allows the values of the parameter to be read and written. Note that
different value types are appropriate for different parameter types, although all parameter values
can be read as strings. The InterBase 6.0 API Guide defines the value types for each parameter
type, or even whether or not a value is necessary. The following table identifies the encoding used
for each interface.

Issue 1.11 121

Firebird Pascal API (fbintf) Guide

Interface Integer Encoding String Encoding Byte Encoding
IDPB No length bytes, (four Max string length 255 One length byte (always
bytes containing the bytes. Encoded as one |set to one), plus one byte
integer value (LSB first) |length byte plus variable |containing the value.
number of character
bytes
ITPB Not used Max string length 255 Not used
bytes. Encoded as one
length byte plus variable
number of character
bytes
ISPB Not used Max string length 255 Not used
bytes. Encoded as one
length byte plus variable
number of character
bytes
ISQRB Two length bytes Max string length 65535 | Not used
(always set to four), plus | bytes. Encoded as two
four bytes containing length bytes plus
the integer value (LSB |variable number of
first) character bytes
ISRB No length bytes, (four Max string length 65535 |No length byte. Single
bytes containing the bytes. Encoded as two | byte value.
integer value (LSB first) |length bytes plus
variable number of
character bytes
IBPB One length byte (always |Not used Not used
set to four), plus four
bytes containing the
integer value (LSB first)
IDIRB Two length bytes Not used Not used
(always set to four), plus
four bytes containing
the integer value (LSB
first)
Example

122

Parameter Blocks

var MyDPB: IDPB;

begin
MyDPB := FirebirdAPI.AllocateDPB;
MyDPB.Add(isc_dpb_user_name).AsString := 'SYSDBA';
MyDPB.Add(isc_dpb_password).AsString := 'masterkey';
MyDPB.Add(isc_dpb_lc_ctype).AsString := 'UTF8';

MyDPB.Add(isc_dpb_set_db_SQL_dialect).AsByte := 3;

is a typical example of the use of IDPB to populate a DPB prior to attaching to the database. Note
that the parameter to the Add method is one of the DPB symbolic constants defined by the Firebird
API.

The following provides an example of enumerating a DPB to print out each parameter's value:

procedure TTestBase.PrintDPB(MyDPB: IDPB);
var i: integer;

begin
writeln('DPB');
writeln('Count = ', MyDPB.getCount);
for i := @ to MyDPB.getCount - 1 do
writeln(MyDPB[i].getParamType,' = ', MyDPB[i].AsString);
writeln;
end;

Issue 1.11 123

Firebird Pascal API (fbintf) Guide

Example Parsing of the Service Response
Block

Note: Forward declarations omitted for clarity.

function WriteServiceQueryResult(QueryResult: IServiceQueryResults): boolean;
var i: integer;
line: AnsiString;

begin

Result := true;

for i := 0 to QueryResult.GetCount - 1 do

with QueryResult[i] do

case getItemType of

isc_info_svc_version:

writeln('Service Manager Version = ', getAsInteger);
isc_info_svc_server_version:

writeln('Server Version = ',6getAsString);
isc_info_svc_implementation:

writeln('Implementation = ',6getAsString);

isc_info_svc_get_license:
writeLicence(QueryResult[i]);
isc_info_svc_get_license_mask:

writeln('Licence Mask = ',6getAsInteger);
isc_info_svc_capabilities:
writeln('Capabilities = ', getAsInteger);

isc_info_svc_get_config:
WriteConfig(QueryResult[i]);
isc_info_svc_get_env:

writeln('Root Directory = ',6getAsString);
isc_info_svc_get_env_lock:

writeln('Lock Directory = ',6getAsString);
isc_info_svc_get_env_msg:

writeln('Message File = ', getAsString);

isc_info_svc_user_dbpath:
writeln('Security File = ',6 getAsString);
isc_info_svc_get_licensed_users:
writeln('Max Licenced Users = ', getAsInteger);
isc_info_svc_get_users:
WriteUsers(QueryResult[i]);
isc_info_svc_svr_db_info:
WriteDBAttachments(QueryResult[i]);
isc_info_svc_line:
begin
line := getAsString;
writeln(line);

Result := line <> '';
end;
isc_info_svc_running:
writeln('Is Running = ',6getAsInteger);

124

Example Parsing of the Service Response Block

isc_info_svc_limbo_trans:
WriteLimboTransactions(QueryResult[i]);
isc_info_svc_to_eof,
isc_info_svc_timeout,
isc_info_truncated,
isc_info_data_not_ready,
isc_info_svc_stdin:
{ignore};
else
writeln('Unknown Service Response Item ', getItemType);
end;
writeln;
end;

procedure WriteDBAttachments(att: IServiceQueryResultItem);
var i: integer;
begin
writeln('DB Attachments');
for i := 0 to att.getCount - 1 do
with att[i] do
case getItemType of
isc_spb_num_att:
writeln('No. of Attachments = ',6 getAsInteger);
isc_spb_num_db:
writeln('Databases In Use = ',6getAsInteger);
isc_spb_dbname:
writeln('DB Name = ',6 getAsString);
end;
end;

procedure WriteLimboTransactions(limbo: IServiceQueryResultItem);
var i: integer;
begin

writeln('Limbo Transactions');

for i := 0 to limbo.getCount - 1 do

with limbo[i] do

case getItemType of

isc_spb_single_tra_id:

writeln('Single DB Transaction = ',6 getAsInteger);
isc_spb_multi_tra_id:

writeln('Multi DB Transaction = ',6getAsInteger);
isc_spb_tra_host_site:

writeln('Host Name = ',6getAsString);
isc_spb_tra_advise:

writeln('Resolution Advisory = ', getAsInteger);
isc_spb_tra_remote_site:

writeln('Server Name = ',6 getAsString);

isc_spb_tra_db_path:
writeln('DB Primary File Name = ', getAsString);
isc_spb_tra_state:
begin
write('State = ');
case getAsInteger of
isc_spb_tra_state_limbo:
writeln('limbo');
isc_spb_tra_state_commit:
writeln('commit');
isc_spb_tra_state_rollback:
writeln('rollback');
isc_spb_tra_state_unknown:
writeln('Unknown');
end;
end;
end;
end;

Issue 1.11

125

Firebird Pascal API (fbintf) Guide

procedure writelLicence(Item: IServiceQueryResultItem);
var i: integer;
begin
for i := 0 to Item.getCount - 1 do
with Item[i] do
case getItemType of
isc_spb_lic_id:

writeln('Licence ID = ',6GetAsString);
isc_spb_lic_key:
writeln('Licence Key = ', GetAsString);
end;

end;

procedure WriteConfig(config: IServiceQueryResultItem);
var i: integer;
begin
writeln('Firebird Configuration File');
for i := 0 to config.getCount - 1 do
writeln('Key = ',config.getItemType,', Value = ',6config.getAsInteger);
writeln;
end;

procedure WriteUsers(users: IServiceQueryResultItem);
var i: integer;

begin
writeln('Sec. Database User');
for i := @ to users.getCount - 1 do

with users[i] do
case getItemType of
isc_spb_sec_username:

writeln('User Name = ', 6getAsString);
isc_spb_sec_firstname:
writeln('First Name = ',6getAsString);

isc_spb_sec_middlename:
writeln('Middle Name = ', getAsString);
isc_spb_sec_lastname:
writeln('Last Name = ', getAsString);
isc_spb_sec_userid:
writeln('User ID = ',6 getAsInteger);
isc_spb_sec_groupid:
writeln('Group ID = ', getAsInteger);
else
writeln('Unknown user info ', getItemType);
end;
writeln;
end;

126

TIME/TIMESTAMP with TIME ZONE

TIME/TIMESTAMP with TIME ZONE

Firebird 4 introduces two new data types: TIME WITH TIME ZONE and TIMESTAMP WITH TIME
ZONE. This appendix discusses these new data types and how they should be used. It also
includes a discussion of the time zone database that has to be deployed in support of the use of
time zones.

C.1 Date and Time Column Types

Internally, Firebird stores date/time information as two 32-bit signed integers plus a 16-bit unsigned
integer:

* Date: In days from From 01.01.0001 AD to 31.12.9999 AD (32 bit signed integer)
* Time: In deci-milliseconds from 0:00 to 23:59:59.9999 (32 bit signed integer)
» Time Zone: (16 bit unsigned integer)
o The values 0 to 2878 represent time zone offsets (in minutes) from -23:59 to 23:59

o Higher values identify time zones from the time zone database (see
RDBS$TIME_ZONES).

Each Date/Time type stores its information in a different combination of the above. The only
combination never used is a Date with a Time Zone.

C.2 TIMESTAMP WITH TIME ZONE

A timestamp represents a fixed point in time (an event) and is the same event regardless of
whether it is expressed in local time, UTC or some other time zone. The Firebird TIMESTAMP data
type is used to record such an event in a database. Prior to FB4, the database designer had to
state whether this was in a fixed time zone, such as GMT, or in some local time dependent on
where the database was deployed. From FB4 onwards. A new TIMESTAMP WITH TIME ZONE
data type is available.

A TIMESTAMP WITH TIME ZONE data type is always saved in the database as a GMT timestamp

plus a time zone id, regardless of whether it was originally input as GMT or as a local time in the
context of some time zone.

Issue 1.11 127

Firebird Pascal API (fbintf) Guide

Converting a timestamp to a standard time zone (e.g. GMT) makes sense before storing it in a
database. The database is then portable between time zones and timestamps can be readily
compared and ordered. Indeed, the only reason you would want to include time zone information in
the database is so that the database records the original way that the timestamp was expressed
and so that it can be rendered in its original format, if so desired.

Firebird requires access to a time zone database in order to perform the conversion to and from
GMT. (See https://en.wikipedia.org/wiki/Tz_database for more information about the tzdata
database).

C.2.1 Entering a Timestamp with Time Zone Value
When entered as text, the date and time part of a TIMESTAMP WITH TIME ZONE are the same
as a TIMESTAMP without a time zone. In FB4, a timestamp's time zone is separated from the
timestamp by white space and can be given in three alternative formats:

1. As atime zone database name e.g. Europe/London or EST5EDT.

2. As an offset to GMT

3. As an alias to an offset to GMT (e.g. EST or Eastern Standard Time). (These are also in
the time zone database, but have no daylight savings time info with them).

In all cases, it is possible to convert the timestamp to GMT and, indeed this is done when saving
the timestamp to the database.

However, consider the following:

e 01.JUL.2020 7:00 America/New_York

* 01.JUL.2020 7:00 ESTS5EDT

* 01.JUL.2020 06:00 EST

* 01.JUL.2020 07:00 -04:00
These are all different ways of entering the same timestamp. On the other hand, a reader only
knows that they are the same if they also know that Daylight Savings Time is in effect for
America/New_York time zone on 1% July and that EDT is 4 hours behind GMT. While a New
Yorker may argue that any kid knows this — is this true for some less well known parts of the world

or for someone not familiar with New York. The database designer needs to think carefully about
how time zones are entered and printed out.

C.2.2 Rendering a TIMESTAMP WITH TIME ZONE

When it comes to rendering a TIMESTAMP WITH TIME ZONE in a report, simply reflecting back
the original input data is probably not a useful approach.

The problem is that while Firebird is very flexible when it comes for timestamp with time zone data
entry — which is a good thing — simply rendering a timestamp in exactly the same format as it was
entered is not necessarily a good thing if timestamps in many different formats are rendered on the
same report. The reader may well struggle to compare the results.

128

https://en.wikipedia.org/wiki/Tz_database

TIME/TIMESTAMP with TIME ZONE

Firebird's default is to return a timestamp in the same format as it was entered. However, the
report designer must think carefully about whether the original format should be used or,
alternatively, whether all timestamps should be rendered in a common format in order to ensure
both readability and comparison without the reader having to keep a time zone database in their
head.

Note that not all input formats convey the same information. In particular, the time zone offset form is
independent of time zone name and whether or not daylight savings time is in effect. For example
“01.JUL.2020 07:00 -04:00" is EDT in New York, but could be AST in New Brunswick in the Canada/Atlantic
time zone.

Furthermore, considering that:

A Time Zone Name, such as America/New_York tells you the offset from GMT only when
looking up the time zone database using the timestamp (including date) as the key. It is
thus “difficult” for the human reader to compare timestamps in different time zones when
using this format.

* Atime zone offset alias, such as EST, is independent of daylight savings time. However, it
is still necessarily for the reader to know how different time zone aliases relate to GMT
when comparing timestamps in different time zones.

Either GMT, or local time plus a time zone offset (e.g. -05:00") are probably the only realistic
common formats for rendering a time zone if unconstrained input for time zone identity is permitted
and human readability is desired. The time zone name may thus be considered to be additional
information and only of interest when you want to show how the timestamp was originally entered.

The IBX Firebird Pascal Interface provides three alternative ways of rendering a TIMESTAMP
WITH TIME ZONE as a string:

1. Default: Timestamp in local time with a time zone offset from GMT.
2. Timestamp in GMT (no time zone offset).
3. Timestamp with time zone as originally input.

The IAttachment extension interface ITimeZoneServices provides methods that may be used to
select the way a time zone is rendered as a string.

C.3 Time with Time Zone

FB4 introduces the TIME WITH TIME ZONE data type.

The TIME data type is a longstanding Firebird data type that records a time in the range
0:00..23:59.9999 and to a precision of 10* seconds. The TIME WITH TIME ZONE data type
extends this to include a time zone identifier as part of the value saved in the database.

A TIME WITH TIME ZONE data type is always saved in the database as a GMT timestamp plus a
time zone id, regardless of whether it was originally input as GMT or as a local time in the context
of some time zone.

A TIME data type may be used for many purpose:

Issue 1.11 129

Firebird Pascal API (fbintf) Guide

* It can be an elapsed time (< 24 hours) as recorded on a stop watch, or a time code on a
video stream.

* |t can be atime of day with reference to a date stored elsewhere. For example, a master
record may include a date and a detailed record may hold a time on that day on which
some event occurs alongside information about the event itself.

* It can be a scheduled time on some day in the future. This can be any day or a day in a
week. For example, shop opening and closing hours may be recorded as a pair of times on
a specified day of the week.

* It could even be a sidereal time. This is defined by wikipedia as a "time scale that is based
on Earth's rate of rotation measured relative to the fixed stars". Here a TIME data type
could record the sidereal time at which an observation is to be made. Given that a sidereal
day is about four minutes shorter than a solar day a separate computation system is
needed to convert a scheduled sidereal time to a calendar time.

A TIME (without time zone) may be used for any of the above. In the first and last cases, the
concept of local time does not apply and hence a TIME WITH TIME ZONE is not of interest. In the
second and third cases, prior to FB4, the database designer will have had to have specified
whether the time is implicitly recorded in UTC or some local time zone. FB4 allows the time zone to
be explicitly added to the value by using a TIME WITH TIME ZONE data type.

C.3.1 Inputting a TIME WITH TIME ZONE Data Type

The time zone can be given each time a time is entered or set as a session default. Either way, the
following applies.

Let's say that the time is to be set as 7 am Eastern (New York time). This could be expressed in
several ways, each resulting in a different database entry when translated to GMT + time zone id.
This is illustrated in the following table.

Original Value Time (GMT) Time Zone ID
7:00 EST 12:00 65136 (EST)
7:00 ESTS5EDT 11:00 or 12:00 65135 (EST5EDT)
7:00 -05:00 12:00 1139 (-05:00)
7:00 America/New York 11:00 or 12:00 America/New_York (65361)

The second and fourth cases are somewhat problematic. The time is translated to either 11:00
GMT or 12:00 GMT depending on whether or not daylight savings time applies. For this you either
need to assume that the daylight savings time is ignored or apply an assumed date for the
translation.

Having originally experimented with the current date as the assumed date for a TIME WITH TIME

ZONE, Firebird now uses 2020/1/1 as the assumed date for when determining whether or not to
apply daylight savings time. Hence, 7:00 America/New York will always translate to 12:00 GMT.

130

TIME/TIMESTAMP with TIME ZONE

The translation to GMT may be an issue that has to be investigated further when looking at how a
TIME WITH TIME ZONE data type is used. The date on which a translation to and from GMT takes
place is an issue that the database designer is going to have to think about carefully. The IBX
Firebird Pascal Interface gives the user the option of specifying an alternative to 2020/1/1 (see
C.3.4).

C.3.2 TIME WITH TIME ZONE use cases
C.3.2.1 Case #1: Local Time in a known Date Context

This use case is built around a pair of tables that are in a master/detail relationship. The master
table contains the date on which some observation is made and the detail table records record the
event itself and the time of the event.

For example, a master table entry may identify a daily log and records the date of the log plus
other summary information. A detail table entry references the master table entry for the day the
log entry was made, records the observation itself and the time of the observation. If the time is
recorded in a TIME WITH TIME ZONE data type then the time can be recorded in local time plus
the time zone. The observation may, for example, be a weather observation, such a temperature
and pressure.

In this use case example, the tables are in a database of worldwide observations and here it is
important to be able to relate observations made in different time zones.

It may be observed that a serious problem would result if the time zone name format (e.qg.
America/New_York) was used for data entry, or its alias EST5EDT.

* The Current Date is used for the translation to GMT i.e. the date on which the log file data
was entered into the database. However, this is not necessarily the same date as the date
in the master record. Depending on the dates when daylight savings time applies, this could
result in an incorrect translation to GMT. The translation back to local time may also be
incorrect as this now depends on both whether Daylight Savings time applied on data entry
and on rendering the date.

* A standard date such as 2020/1/1 is used then the GMT time may be inappropriate
depending on whether or not Daylight Savings Time is in effect on the log entry date.
However, the translation back to a local time will always be to the correct time for the log
entry as the translation uses the same date and hence daylight savings time offset in both
directions.

A workaround to avoid either of the above issues could be to prohibit the use of time zone names
in data entry and hence to force the use of the current offset. This would ensure a correct
translation to GMT, albeit in a way that requires the person doing the data entry to correctly identify
the offset and which removes the time zone identity from the log entry.

Alternatively, the time zone could be entered as a character string in the master record (or more
efficiently as a reference to the RDB$TIME_ZONE_ID in the RDB$TIME_ZONES virtual table),
and the time recorded in GMT using a TIME (without time zone) data type. As all the log entries
that reference the same master record are in the same time zone this would be an appropriate and
efficient way to record the time zone information.

In order to efficient compare times entered in log files from different time zones, it is still desirable
to translate to or save the time in GMT.

Issue 1.11 131

Firebird Pascal API (fbintf) Guide

The time would thus either have to be explicitly entered in GMT or a trigger defined to translate
from local time to GMT using the master record time zone and date. FB4 provides built-in stored
procedure “RDBS$TIME_ZONE_UTIL.TRANSITIONS” that would support such a trigger.

The same built-in stored procedure could also be used to support a function that converts a time in
GMT to a local time on a given date and for a specific time zone. This could be used to support
(e.g.) a VIEW that returned log file entries in local time. For example:

CREATE FUNCTION GMT_TO_LOCALTIME(gmt_time TIME, timezone_name CHAR(63), atDate
DATE)
RETURNS TIME;

C.3.2.2 Case #2: Scheduled Local Times

In this use case, a database table is used to record an event time schedule e.g. by day of the
week, or just any day. A specific example could be a table of shop opening and closing times with
each record providing the opening and closing times (in local time) on a specific day of the week
and for a given shop.

Here, the time is a “Wall clock time”. That is the opening/closing time is the time on a local “wall
clock” irrespective of whether daylight savings time applies on any given day. The whole point of
daylight savings time is to advance the time shown on a wall clock so that scheduled events are
shifted to an earlier solar time without having to change the local time of each such event.

The value in using a TIME WITH TIME ZONE data type here should be that the table may be a list
of many shops located in different time zones in the same or different countries. By including the
time zone it should be possible to determine whether a given shop is open “now” for a user in a
different time zone, or to perform a query returning all shops in the database that are open at a
given date and time, regardless of which time zone they are in.

Here, again, the data entry problem rears its ugly head.

» If the opening/closing time is entered with a fixed offset to GMT or using a time zone name
(e.g. EST) that does not include any reference to daylight savings time, then the time will be
converted to GMT using the explicit or implicit fixed offset. E.g. an opening time of
7:00 -0500 becomes 12:00 GMT in the database itself. In New York, in the winter months,
this may translate correctly to the wall clock time that the shop opens. However, in the
summer months, presenting the opening time as 07:00 EST (or -05:00) is wrong as this
would be converted to a wall clock time of 8 am by anyone who reads it properly.

» If the opening/closing time is entered with a time zone name (e.g. America/New_York):

o |f the current date is used for the translation then, in the winter months, it will be
translated to 12:00 GMT in the database. If it is then read back in the summer months,
12:00 GMT becomes 08:00 America/New_York when applying daylight savings time.
Again, the wrong answer as the wall clock time should be 07:00.

o 1f 2020/1/1 is used for the translation then it will always be translated to 12:00 GMT in
the database. This is the correct GMT time in the winter months, but not the summer
months where it should be 11:00 GMT. At least, the translation back to local time will
always be to 07:00 America/New_York, or 07:00 -05:00 in the winter months and to
07:00 -04:00 in the summer months.

None of the above gives a perfect solution and, again, the problem is due to translating to GMT. In
use case #1 this was because the date used for the translation is not necessarily the same as the

132

TIME/TIMESTAMP with TIME ZONE

log file date. In this use case, any translation to GMT should only be done when the time is read
from the database or compared with other database entries. This is what “wall clock time” implies.

Some might argue that the best result is obtained when entering the opening time with a time zone
name. However, the incorrect GMT time that may result will cause problems where comparing the
opening times of shops in different time zones.

A workaround to avoid this problem is again to separate out the time and time zone into separate
database columns. The time zone is a property of the shop itself and so only needs to be recorded
once per shop. The opening/closing times may be recorded using the TIME (without time zone)
data type.

On data entry, there is no requirement for any translation to GMT and the time is entered into the
database as a wall clock time. There is also no need to translate the opening/closing time on read
back. The correct answer is always returned.

The only need to translate the opening/closing time to GMT occurs when comparing shop opening
times. For example, to answer a question such as which shops are open on a given date and time.
The translation to GMT is performed at the given date and time and hence the desired result
returned.

Here, a function such as

CREATE FUNCTION LOCALTIME_TO_GMT(localtime TIME, timezone_name CHAR(63), atDate
DATE)
RETURNS TIME;

is needed to allow (e.g.) shop opening/closing times to be compared.
C.3.3 Discussion

Neither of the above use cases appears to be a case where a TIME WITH TIME ZONE can be
usefully used, even though it was expected that they would be. In each case, the problem is due to
the translation to GMT.

* In use case #1, the problem is that a different date is used as the baseline for the
translation rather than the log file date.

* In use case #2, any translation to GMT is inappropriate until there is a need to compare
times. This is always true for “wall clock” time.

Use case #2 agues for not translating a TIME WITH TIME ZONE to GMT when it is entered into
the database. However, that would not be right for use case #1. Under use case #1, you do want to
translate to GMT because the same date will always be used for the translation and doing it at data
input is more efficient than having to perform the translation dynamically every time log file entries
are compared.

Also, storing the time as a local time could create some interesting issues for indexes and table
joins, and is probably best avoided.

On the other hand, use case #1 would benefit from being able to specify the date used for
translation to GMT in context.

Issue 1.11 133

Firebird Pascal API (fbintf) Guide

For use case #2, the proposed workaround is probably the correct solution as long as the function
LOCALTIME_TO_GMT or similar is available to support comparing (e.g.) shop opening/closing
times.

There is no value in translating a wall clock time to GMT until it needs to be compared with other
wall clock times, and this translation will always be dynamic and needs to take into account the
date on which the times are compared.

C.3.4 The IBX Implementation

The IBX Firebird Pascal Interface includes its own client for converting local times (TIME WITH
TIME ZONE) to GMT.

C.3.4.1 Setting the data value

The ISQLParam interface contains several overloaded versions of the SetAsTime method i.e.

procedure SetAsTime(aValue: TDateTime); overload;
procedure SetAsTime(aValue: TDateTime; OnDate: TDateTime;
aTimeZoneID: TFBTimeZoneID); over load;
procedure SetAsTime(aValue: TDateTime; OnDate: TDateTime;
aTimeZone: AnsiString); overload;
procedure SetAsTime(aValue: TDateTime; aTimeZoneID: TFBTimeZoneID); overload;
procedure SetAsTime(aValue: TDateTime; aTimeZone: AnsiString); overload;

The first variant is used typically with a TIME (without time zone) data type and does not specify
any time zone. A server side default will be used if the actual column type is TIME WITH TIME
ZONE.

The remaining four variants are used with a TIME WITH TIME ZONE data type. The allow the time
zone to be identified as a string (e.g. 'Europe/London') or as a Firebird time zone integer identifier,
and use either the current default date to convert to GMT, or allow the date to be explicitly
identified.

The current default date is initially 2020/1/1, but may be modified on a per attachment basis using
the SetTimeTZDate method of the ITimeZoneServices interface.

C.3.4.2 Getting the Data Value

Likewise, the ISQLData and ISQLParam interfaces provide several overloaded versions of the
GetAsTime method i.e.

procedure GetAsTime(var aTime: TDateTime; var dstOffset: smallint;

var aTimezonelID: TFBTimeZonelD; OnDate: TDateTime); overload;
procedure GetAsTime(var aTime: TDateTime; var dstOffset: smallint;

var aTimezone: AnsiString; OnDate: TDateTime); overload;
procedure GetAsTime(var aTime: TDateTime; var dstOffset: smallint;

var aTimezoneID: TFBTimeZonelID); overload;
procedure GetAsTime(var aTime: TDateTime; var dstOffset: smallint;

var aTimezone: AnsiString); overload;

The GetAsDateTime function is also available and is typically used to read a TIME (without time
zone) data type. If used with a TIME WITH TIMEZONE data type then the local time is returned
without any time zone context.

The GetAsTime methods are used with a TIME WITH TIME ZONE data type and return the time in
local time, the offset from GMT and either with the time zone name or the Firebird time zone id.

134

TIME/TIMESTAMP with TIME ZONE

The date used to translate from GMT to local time may also be specified explicitly or the current
default date used.

C.3.4.3 Text Values

The SetAsString and GetAsString methods may also be used to respectively set or return time with
time zone data values.

In these cases the current default date is always used to translate to or from GMT. For the
GetAsString method, the time zone is normally rendered as a time zone offset. However, this can
be modified using the SetTZTextOption method of the ITimeZoneServices interface.

Note: if a TIME WITH TIME ZONE value is given as a string literal within an INSERT or UPDATE SQL
statement then the conversion to GMT is always performed server side and will used the Firebird default
date (2020/1/1).

C.4 The Time Zone Database

For character set management including collation sequences, Firebird uses an external code
library - International Components for Unicode” (ICU). Firebird 4 and later also uses this code
library as the source of its Time Zone Database. This is used in support of TIME/TIMESTAMP
WITH TIME ZONE data types and to convert local times to and from GMT taking into account the
time zone and any daylight savings time offsets that need to be applied.

The ICU library is deployed as a DLL or Shared Obiject (.so) and may be provided as part of the
Operating System.

* For Linux distros, the ICU shared objects are always deployed by the distro and are kept
up-to-date as part of the normal OS update cycle.

* For Microsoft Windows, the ICU DLLs have been included in the Windows OS from
Windows 10 Version 1703 (Creators Update) onwards. They are not present in earlier
versions of Windows. However, Firebird will always ignore the Windows ICU files and will
instead use the ICU files installed with the database and located in the Firebird installation
folder.

* For macOS, the ICU shared objects are provided as part of macOS.

Note that as the ICU libraries are also used for character set collation sequences, an updated ICU
library can also include a change to character set collations and thus may require that any indexes
that depend upon an updated collation sequence have to be rebuilt — or a gbak backup/restore
cycle is used to rebuild the indexes.

C.4.1 The Firebird Time Zone Database

The ICU library needs to be up-to-date in order to correctly translate local times to and from GMT.
This is because, from time to time, there are legislative changes to time zones and daylight savings
times and these need to recorded in the ICU library.

In order to avoid having to update the time zone database without also needing a full ICU library
update, a Firebird local copy of the time zone database files are held in the <firebird root>/tzdata
folder, as a set of '*.res' files. These are used in preference to the time zone database in the ICU
DLLs or shared objects. The time zone database can be updated by simply replacing these files.

Issue 1.11 135

Firebird Pascal API (fbintf) Guide

When new versions of the time zone database files are released, they are made available at:

https://github.com/FirebirdSQL/firebird/tree/master/extern/icu/tzdata

The file “le.zip” can be downloaded from this page and contains the replacement '*.res' files for use
on little endian architectures (e.g. Intel and AMD64 architectures). These have to extracted and the
current versions in the <firebird root>/tzdata folder replaced with the updated versions from the zip.

C.4.2 Updating the ICU and Time Zone Database under Linux

ICU library update is performed automatically when an OS update is performed and the update
contains an updated ICU shared object.

It is expected that the Firebird 4 packages should also include a “Firebird-tzdata” package
containing the latest Firebird local copy of the time zone database. The time zone database should
thus also be automatically updated as part of the normal update cycle with no need for manual
update.

Note: the tzdata or timezone package that is part of most Linux distros also contains a time zone
database. However, this is not used by the ICU library.

C.4.3 Updating the ICU and Time Zone Database under Windows

Each Firebird incremental release includes the most up-to-date version of the ICU library and time
zone database when it is released. However, the time zone database may also need to be updated
between Firebird releases. This is not performed automatically under Windows and has to be
manually initiated as described above.

Hopefully, an installer package will eventually be made available to automate the process.
C.4.4 Server Side Considerations

The time zone database for both Firebird Server and embedded server installations should be kept
up-to-date and the source of the time zone database files regularly checked for updates.

C.4.5 Client Side Considerations

For character set collations, only the Firebird server/embedded server needs access to the ICU
library. However, by default, both Firebird clients and servers require access to the ICU library (or
tzdata files) for time zone information. In Firebird 4 Beta 1 client local access to the ICU library was
mandatory. However, in later versions, this is optional and it is possible for a Firebird client to rely
on the server for all time zone computations. This mode is enabled on a per database connection
basis by executing the SQL statement “SET BIND OF TIME ZONE TO EXTENDED".

The downside of this mode of operation is that there is a cost of an extra two bytes overhead in the
“over the wire protocol” per TIME/TIMESTAMP with TIME ZONE field value returned. However, the
upside is that it avoids having to maintain an up-to-date copy of the client side ICU library.
However, it is a limited mode of operation as the client side still lacks the means to translate time
zone ids into time zone names. It also adds a two byte overhead to each timezone value returned
from the server.

There is also a potential problem with having to separately deploy copies of the time zone

database to clients and servers with the potential for data inconsistency if not all copies are
successfully upgraded. This is a particular issue with Windows Clients as the Firebird time zone

136

https://github.com/FirebirdSQL/firebird/tree/master/extern/icu/tzdata

TIME/TIMESTAMP with TIME ZONE

data files are not normally distributed as part of Windows Update and have to be separately
installed.

In order to avoid such problems, IBX's Firebird Pascal Interface includes its own client side time
zone client which uses the server side time zone database in order to perform time zone
operations. So that the overhead of server requests is minimised, the results of each request are
cached locally on a per attachment basis. The result is that the Firebird time zone database
does not have to be distributed alongside IBX based Firebird Clients.

Use of the server side time zone database should be transparent to the user. This behaviour may
be overridden and the IBX Firebird Pascal Interface forced to use a client side time zone database,
if available, by invoking the SetUselLocalTZDB method of the ITimeZoneServices |Attachment
extension interface.

Issue 1.11 137

	1 Introduction
	1.1 References
	1.2 Change History
	1.2.1 Version 1.1
	1.2.2 Version 1.2
	1.2.3 Version 1.3
	1.2.4 Version 1.4
	1.2.5 Version 1.5
	1.2.6 Version 1.6
	1.2.7 Version 1.7
	1.2.8 Version 1.8
	1.2.9 Version 1.9
	1.2.10 Version 1.10
	1.2.11 Version 1.11

	2 Installation and Preparation for Use
	2.1 Installation under Lazarus
	2.2 Installation under FPC
	2.3 Installation under Delphi
	2.4 Installing Firebird
	2.5 Which Firebird API?

	3 Programming with the Firebird Pascal API
	3.1 Using the API in your Project
	3.2 Accessing the API
	3.3 Locating the Firebird Client Library
	3.3.1 Under Linux
	3.3.2 Under Windows
	3.3.3 Under Darwin (OSX)
	3.3.4 Overriding the Default Library Name
	3.3.4.1 The FBLIB Environment Variable
	3.3.4.2 The OnGetLibraryName Event Handler

	3.4 API Version Number
	3.5 Reference
	3.6 The Firebird Library Interface
	3.7 Accessing the Firebird Provider Interface
	3.8 Multi-Threading

	4 Working with Databases
	4.1 The Database Parameter Block (DPB)
	4.1.1 Reference

	4.2 Creating a New Database
	4.3 Attaching to an Existing Database
	4.4 Controlling access to the DPB Password
	4.5 Disconnecting
	4.6 Reconnecting
	4.7 Dropping a Database
	4.8 Getting Database Information
	4.8.1 Using the IDIRB Interface
	4.8.2 The IDBInformation Interface

	4.9 Getting Information about the Attachment
	4.10 Database Activity Monitor
	4.11 Attaching to a Database using the Embedded Server
	4.12 Reference
	4.13 The ITimeZoneServices Interface

	5 Working with Transactions
	5.1 The Transaction Parameter Block (TPB)
	5.2 Starting a Transaction
	5.3 Starting a Transaction on Multiple Databases
	5.4 Transaction Names
	5.5 Committing a Transaction
	5.6 Two Phase Commit
	5.7 Transaction Rollback
	5.8 Restarting a Transaction
	5.9 Forcibly Completing a Transaction
	5.10 Transaction Activity Monitor
	5.11 Transaction Information
	5.12 Reference

	6 Working with Dynamic SQL
	6.1 Dynamic SQL and the Firebird Pascal API
	6.1.1 Named Parameters
	6.1.2 Column Names

	6.2 SQL Statement with no input or output
	6.3 Metadata
	6.3.1 Input Parameter Metadata
	6.3.2 Output Metadata

	6.4 SQL Statements with input parameters only
	6.4.1 The IAttachment.ExecuteSQL method

	6.5 SQL Statements with Output
	6.5.1 The ISQLData Interface

	6.6 Date and Time Column Types
	6.7 The Numeric Data Type
	6.8 Query Statements
	6.8.1 Scrollable Cursors
	6.8.2 Usage Notes

	6.9 Simplified Queries
	6.10 Batch Update/Insert
	6.10.1 Example
	6.10.2 The Batch Row Limit
	6.10.3 The Batch Completion Interface
	6.10.4 Information Services

	6.11 Performance Optimisation
	6.12 Performance Statistics
	6.13 Stale Reference Checks
	6.14 Reference

	7 Working with Blob Data
	7.1 Blob MetaData
	7.1.1 Output Metadata
	7.1.2 Input Metadata

	7.2 The IBlob Interface
	7.2.1 IBlob Reference

	7.3 Reading Blob Data
	7.4 Creating or Modifying a Blob
	7.5 Removing a Blob
	7.6 Using Blob Filters
	7.7 Inline Blobs

	8 Working with Array Data
	8.1 Array Metadata
	8.2 The IArray Interface
	8.3 Reading Array Data
	8.4 Creating or Modifying an Array
	8.5 Reducing Array Bounds
	8.6 Removing an Array
	8.7 Event Handlers

	9 Working with Character Sets
	9.1 Firebird Character Sets
	9.2 Character Set Usage
	9.3 The Database Connection and the Default Character Set
	9.4 Code Pages
	9.5 Transliteration Rules
	9.6 Text Blob Handling
	9.7 User Defined Character Sets

	10 Handling Error Conditions
	10.1 Exceptional Error Handling Cases
	10.2 The IStatus Interface
	10.2.1 Deprecation of SQL Error Code

	11 Working with Events
	11.1 The IEvents Interface
	11.2 Asynchronous Event Handling
	11.3 Synchronous Event Handling

	12 Working with Services
	12.1 The Service Parameter Block (SPB)
	12.2 Attaching to the Service Manager
	12.2.1 IServiceManager Reference

	12.3 Starting a Service
	12.3.1 The Service Request Block (SRB)
	12.3.2 List of Services

	12.4 Querying a Service
	12.4.1 The Service Query Parameter Block (SQRB)
	12.4.2 The Service Request Block (SRB)
	12.4.2.1 Running Services
	12.4.2.2 Information Requests
	12.4.2.3 Setting Properties

	12.4.3 The Query Response

	12.5 Detaching from the Service Manager
	12.6 Backup and Restore Services
	12.6.1 Backup and Restore on the Server
	12.6.2 Backup and Restore using a File on the Client System

	13 Deployment Guidelines
	13.1 Deployment on Windows
	13.1.1 Firebird 2.5 and Earlier
	13.1.1.1 Firebird Client Only
	13.1.1.2 The Embedded Firebird Server

	13.1.2 Firebird 3.0 and Later
	13.1.2.1 Firebird Client Only
	13.1.2.2 Firebird Embedded Server

	13.1.3 Firebird 4 and later

	13.2 Deployment on Linux
	13.2.1 Firebird 2.5 and Earlier
	13.2.1.1 Firebird Client only
	13.2.1.2 Firebird Embedded Server

	13.2.2 Firebird 3.0 and Later
	13.2.2.1 Firebird Client Only
	13.2.2.2 Firebird Embedded Server
	13.2.2.3 Firebird 4

	14 Client Side Journaling
	14.1 Using Client Side Journaling
	14.2 Journal File Syntax
	14.2.1 Transaction Start:
	14.2.2 Transaction Commit :
	14.2.3 Transaction Commit retaining :
	14.2.4 Transaction Rollback:
	14.2.5 Transaction Rollback retaining:
	14.2.6 Update/Insert/Delete

	14.3 Reading the Journal File
	14.4 Using a Journal File for Failure Recovery
	14.4.1 Database Scheme Dependencies
	14.4.2 Use of IBX$JOURNALS and IBX$SESSIONS
	14.4.3 Use of the IBX$JOURNALS Table for Recovery

	Appendix A Parameter Blocks
	Appendix B Example Parsing of the Service Response Block
	Appendix C TIME/TIMESTAMP with TIME ZONE
	C.1 Date and Time Column Types
	C.2 TIMESTAMP WITH TIME ZONE
	C.2.1 Entering a Timestamp with Time Zone Value
	C.2.2 Rendering a TIMESTAMP WITH TIME ZONE

	C.3 Time with Time Zone
	C.3.1 Inputting a TIME WITH TIME ZONE Data Type
	C.3.2 TIME WITH TIME ZONE use cases
	C.3.3 Discussion
	C.3.4 The IBX Implementation

	C.4 The Time Zone Database
	C.4.1 The Firebird Time Zone Database
	C.4.2 Updating the ICU and Time Zone Database under Linux
	C.4.3 Updating the ICU and Time Zone Database under Windows
	C.4.4 Server Side Considerations
	C.4.5 Client Side Considerations

