
Registered in England Registration No. 2624328

Issue 1.0,
3 June 2024

McCallum Whyman Associates Ltd

EMail: info@ mccallumwhyman.com, http://www.mccallumwhyman.com

MWA Software

Dynamic
Database
Controls

COPYRIGHT

The copyright in this work is vested in McCallum Whyman
Associates Ltd. The contents of the document may be freely
distributed and copied provided the source is correctly
identified as this document.

© Copyright McCallum Whyman Associates Ltd (2024)
trading as MWA Software.

Disclaimer

Although our best efforts have been made to ensure that the
information contained within is up-to-date and accurate, no
warranty whatsover is offered as to its correctness and readers
are responsible for ensuring through testing or any other
appropriate procedures that the information provided is correct
and appropriate for the purpose for which it is used.

ii

CONTENTS Page

1 INTRODUCTION...1

2 TIBDYNAMICGRID..3
2.1 OVERVIEW...3
2.2 COLUMN PROPERTIES..5
2.3 TIBDYNAMICGRID NEW PROPERTIES...6
2.4 TIBDYNAMICGRID NEW EVENTS..7
2.5 THE EDITOR PANEL..7
2.6 SETTING QUERY PARAMETERS..8

3 TDBCONTROLGRID..9
3.1 OVERVIEW...9
3.2 TDBCONTROLGRID PROPERTIES..10
3.3 TDBCONTROLGRID EVENTS...11

4 TIBTREEVIEW..13
4.1 OVERVIEW...13
4.2 TIBTREEVIEW PROPERTIES...14
4.3 TIBTREEVIEW METHODS...15
4.4 DRAG AND DROP..15
4.5 SETTING QUERY PARAMETERS..16

5 TIBLOOKUPCOMBOEDITBOX...17
5.1 OVERVIEW...17
5.2 TIBLOOKUPCOMBOEDITBOX EXAMPLE..18

5.2.1 Auto-insert...19
5.3 TIBLOOKUPCOMBOEDITBOX PROPERTIES...20
5.4 TIBLOOKUPCOMBOEDITBOX EVENT HANDLERS..21
5.5 SETTING QUERY PARAMETERS..21

6 TIBARRAYGRID...23
6.1 OVERVIEW...23
6.2 PROPERTIES..23
6.3 EXAMPLES...24

6.3.1 Database Creation..24
6.3.2 1D Array Example..25
6.3.3 2D Array Example..25

7 INTERFACE SPECIFICATION...27
7.1 THE IDYNAMICSQLDATASET INTERFACE..27

7.1.1 TDataset Requirements...28
7.2 THE IDYNAMICSQLCOMPONENT INTERFACE..29
7.3 THE IDYNAMICSQLEDITOR INTERFACE...29

7.3.1 Methods...30
7.4 THE IDYNAMICSQLPARAM INTERFACE...30

7.4.1 Methods...31
7.5 THE IARRAYFIELD INTERFACE..31

7.5.1 Methods...31
7.6 THE IARRAYFIELDDEF INTERFACE..32

7.6.1 Methods...32

iii

 Introduction

1
Introduction

The Dynamic Data Controls were originally distributed as an integral part of the IBX for Lazarus
package and were dependent on the use of IBX for database access. Starting with IBX release
2.7.0, the “ibcontrols” package is no longer dependent on IBX. Pascal (corba) interfaces are used
to communicate between the controls and the database access provider (e.g. IBX) and any similar
package that provides the same interfaces can now be used with the controls. Developers of other
Database Access Providers are encouraged to use these interfaces as defined in the code snippet
IBDynamicInterfaces.pas and to provide the same functionality in their packages, and hence
to allow their use with the Dynamic Database Controls.

The Lazarus IDE pallet tab for these controls has also been renamed from “Firebird Data Controls”
to “Dynamic Database Controls”. The package name remains “ibcontrols”.

The Dynamic Database Controls are:

• TIBLookupComboEditBox
• TIBDynamicGrid
• TIBTreeview
• TDBControlGrid
• TIBArrayGrid

TIBLookupComboEditBox is a TDBLookupComboBox descendent that implements
"autocomplete" of typed in text and "autoinsert" of new entries. Autocomplete uses SQL
manipulation to revise the available list and restrict it to items that are prefixed by the typed text
(either case sensitive or case insensitive). Autoinsert allows a newly typed entry to be added to the
list dataset and included in the available list items.

TIBDynamicGrid is a TDBGrid descendent that provides for:

• automatic resizing of selected columns to fill the available row length

1

Dynamic Database Controls

• automatic positioning and sizing of a "totals" control, typically at the column footer, on a per
column basis.

• DataSet resorting on header row click, sorting the dataset by the selected column. A
second click on the same header cell reversed the sort order.

• Support for a "Panel Editor". That is on clicking the indicator column, the row is
automatically expanded and a panel superimposed on it. The panel can have any number
of child controls, typically data aware controls with the same datasource as the grid
allowing for editing of additional fields and more complex editors.

• Reselection of the same row following resorting.

• A new cell editor that provides the same functionality as TIBLookupComboEditBox. Its
properties are specified on a per column basis and allows for one or more columns to have
their values selected from a list provided by a dataset. Autocomplete and autoinsert are
also available. The existing picklist editor is unaffected by the extension.

TIBTreeView is a data aware TCustomTreeView.

TDBControlGrid is a lookalike rather than a clone for the Delphi TDBCrtlGrid. TDBControlGrid is a
single column grid that replicates a TWinControl - typically a TPanel or a TFrame in each row.
Each row corresponds to a row of the linked DataSource. Any data aware control on the replicated
(e.g.) TPanel will then appear to have the appropriate value for the row.

Note: TDBControlGrid is not dependent on the availability of the IBDynamicInterfaces and can be used with
any Database Access Provider.

TIBArrayGrid is a data aware control derived from TCustomStringGrid and which may be used to
display/edit the contents of a one or two dimensional Firebird array Field.

The subsequent chapters of this document describe each control in turn and finally the Pascal
interfaces that they depend on. Users of the controls need not read the chapter on the Pascal
interfaces; this chapter is intended as a guide for Database Access Provider developers.

Examples of the use of the controls may be found in the IBX “examples” directory.

2

 TIBDynamicGrid

2
TIBDynamicGrid

2.1 Overview

The TIBDynamicGrid is illustrated above using Firebird's example “employee” databases.

In use, it looks just like a TDBGrid and is a TDBGrid descendent. Any project that uses IBX and
TDBGrid can thus be quickly converted to using TIBDynamicGrid. The control uses SQL
Manipulation to manage column sorting.

3

Illustration 1: The TIBDynamicGrid

Dynamic Database Controls

The above example can be found in “ibx/examples/employee” and illustrates most of the benefits
of TIBDynamicGrid.

• Resize the form and you will see how the “Dept” column automatically grows/shrinks to
ensure that the grid always fills the available space and how the Salary “Total” control
(TDBText) moves so that it is always aligned with the grid. Column resizing is controlled at
design time by setting the AutoSizeColumn property for each column that it is to be
dynamically resized, with its design time width interpreted as the minimum column width. All
other column widths remain unchanged.

• Click on the “Started” column header (or any other column header) and the table will be
resorted by that column. A second click on the same header reverses the sort order.

• Select a row and press “F2”, or click on “Edit” or the left hand indicator column and the
Editor Panel is revealed (See Illustration 2). This allows the row to be edited free of the
constraints imposed by a simple column editor.

• After reopening the dataset (e.g. after a re-sort or change of filters) the previously selected
row is automatically reselected.

• The filters, such a “salary range”, also illustrate how the new IB SQL Parser works with the
TIBDynamicGrid. For example, where a salary range is selected, the dataset is re-opened
and the filters are applied in the BeforeOpen event handler.

• Each row can still be edited without having to open the panel editor. The column “located”
is an example of the use of TIBLookupComboEditBox as a column editor. Note that the
country list is dynamically generated and varies according to Job Code (an Employee
Database constraint).

4

 TIBDynamicGrid

2.2 Column Properties

Most of TIBDynamicGrid's new features are accessed via the column editor and are properties of
each column in the grid. The new column properties are given below.

AutoSizeColumn Boolean If true then the column is automatically resized
to fill the grid. More than one column can have
this property set to true.

ColumnTotalsControl TControl Optional. Used to identity a control (typically a
TDBEdit or TDBText) to be kept in vertical
alignment with the column, and to have the
same width.

Note that the horizontal positioning is unaffected by
grid resize, and hence the total can be placed either
above or below the grid.

InitialSortColumn Boolean Identifies the column used to sort the grid when
the dataset is first opened.

DBLookupProperties TDBLookupProperties These properties are copied to a
TIBLookupComboBox when it is used as a
column editor. Setting
TDBLookupProperties.ListSource implictly
requests this as the column editor instead of a
normal pick list.

If the TDBLookupProperties.DataFieldName is

5

Illustration 2: TIBDynamicGrid with an Editor Panel Visible

Dynamic Database Controls

not set then the control works as a “pick list” with
its values taken from the List Source DataSet.

If the TDBLookupProperties.DataFieldName is
set then it works as full lookup list. The
DataFieldName identifies a field in the parent
TIBDynamicGrid.DataSource.DataSet. This field
does not have to be visible in the grid. When the
editor completes, the identified field is set to the
value of the List Source field identified by
TDBLookupProperties.KeyField.

2.3 TIBDynamicGrid New Properties

EditorPanel TControl When set, this control (typically a TPanel or
TFrame) is used as the Editor Panel (see
below).

ExpandEditorPanelBelowRow Boolean When set and an editor panel is displayed, the
row height is set to the current row height plus
the panel height and the Editor Panel placed
under the row. That is, the original row is still
displayed with the editor panel beneath it. The
default is that the editor panel appears to
replace the row.

AllowColumnSort Boolean Enables column sorting by column header click
(default true).

Descending Boolean Determines the initial sort order. Default is false
i.e. ascending sort order.

DefaultPositionAtEnd Boolean Determines the initially selected row when the
dataset is first opened. If true then the last row is
selected, otherwise the first row. Default: false.

IndexFieldNames String This is a semi-colon separated list of one or
more dataset fieldnames. Typically this is the
primary key for the dataset. Used for automatic
reselection of rows after the dataset is reopened.

A property editor is available for design time field
name selection.

6

 TIBDynamicGrid

2.4 TIBDynamicGrid new Events

OnBeforeEditorHide This event is called before the Editor Panel is hidden. Can be used
to validate changes.

OnEditorPanelShow This event is called after the Editor Panel is made visible

OnEditorPanelHide This event is called after the Editor Panel is hidden. Can be used to
do any additional tidying up needed.

OnKeyDownHander The TIBDynamicGrid uses a KeyDown handler to intercept edit keys
while the Editor Panel is active. For example, to process an
“escape” key as a cancel edit. You can write your own keydown
handler to modify this behaviour.

OnColumnHeaderClick Called when a column header is clicked and before the dataset is
re-sorted. Can be used to modify the column index for the sort.

OnUpdateSortOrder Called when the dataset select SQL is being modified prior to
resorting the dataset. Can be used to modified the SQL “Order by”
clause. e.g. to add a subsort column. For example, useful when one
column has a “year” and the next column is the “month”. Clicking on
“year” can then made to subsort on “month”. Can also return an
empty string in order to prevent sorting of the dataset.

OnRestorePosition Called when the dataset is opened and may be used to override the
initially selected record. The event provides a read/write argument
(Location) that is an array of variants. This is either an empty zero
length array or contains the same number of elements as there are
indexnames (See IndexFieldNames property). In the latter case, it
contains the index key values for the previously selected row (i.e.
when the dataset was last closed). The first time the dataset is
opened the array is empty.

The location can be inspected and replaced by an alternative
location (index key values) or set to empty. In the former case, the
grid will attempt to locate the selected row. In the latter case, the
default position is selected (see DefaultPositionAtEnd property).

2.5 The Editor Panel

An Editor Panel may be any TControl available on the form. However, in practice, it is typically
either a TPanel or a TFrame. The example shows a TPanel being used as an Editor Panel.

You can create an Editor Panel by simply dropping it on to the same form as the TIBDynamicGrid
and then selecting it as the value of the TIBDynamicGrid.EditorPanel property.

7

Dynamic Database Controls

To be useful, the Editor Panel should be populated with data aware controls that use the same
DataSource as the grid and are individually used to edit fields in the same row. The height of the
panel should be the minimum necessary as this will determine the row height when it is visible.

At run time, the Editor Panel is automatically hidden until called into use by either:

a) Pressing “F2” when the Dynamic Grid has the focus.

b) Clicking on the left hand indicator column, or

c) Calling the TIBDynamicGrid.ShowEditorPanel method.

In order to show the editor panel, the following actions are performed by the TIBDynamicGrid:

• The current row is resized to the height of the Editor Panel.

• The Editor Panel is resized and repositioned so that it fits exactly over the current row.

• The Editor Panel is made visible.

The current row can now be edited using the child controls on the Editor Panel – that is as long as
their DataSource is the same as the grid's.

The Editor Panel is hidden (and any changes Posted to the DataSet) when:

a) A different row is selected by the mouse or up/down arrow keys

b) The Escape Key is Pressed (cancels the changes)

c) “F2” is pressed.

d) The TIBDynamicGrid.HideEditorPanel method is called.

Once the Editor Panel is hidden, the current row is re-sized back to its correct height.

2.6 Setting Query Parameters

The dataset used as the TIBDynamicGrid's data source may have a select query that contains
query parameters. However, in order to perform column sorting, TIBDynamicGrid manipulates the
SQL query “behind the scenes” to change the “order by” clause. Because of this, the only “safe”
place to set values for query parametersis in the in dataset's “BeforeOpen” event handler. This is
guaranteed to be called every time the grid updates the SQL order by clause and re-executes the
query.

Parameter values set before the dataset is opened and outside of the “BeforeOpen” event handler will be lost
when the grid updates the SQL and reset to the default null value.

8

 TDBControlGrid

3
TDBControlGrid

3.1 Overview

TDBControlGrid is a lookalike rather than a clone for the Delphi TDBCrtlGrid. TDBControlGrid is
a single column grid that replicates a TWinControl - typically a TPanel or a TFrame in each row.

9

Illustration 3: Example Control Grid

Dynamic Database Controls

Each row corresponds to a row of the linked DataSource. Any data aware control on the replicated
(e.g.) TPanel will then appear to have the appropriate value for the row.

Unlike the Delphi TDBCtrlGrid, there are no restrictions on which controls can be used on the
replicated panel. In principle, any visual control may be used. The “csReplicable” property is not
used by TDBControlGrid. However, there can be performance issues with a large number of
controls on the panel or when there is a high latency to draw one or more controls.

To use the new control, simply drop it on to a form at design time and size it appropriately. Then
separately drop a TPanel on to the same form and populate it with appropriate child controls,
typically data aware controls using the same DataSource.

Now link to TDBControlGrid DrawPanel property to this panel. The panel should then be
repositioned as a child control of the TDBControlGrid and occupying the top and only row of the
grid. The row height should be set to the panel height and the panel width will the set to the with of
the grid row. The panel can be unlinked at any time.

Now set the TDBControlGrid.DataSource to the common data source for the controls on the
panel.

Important Note: It is strongly recommended not to open the source DataSet for a DBControlGrid during a
Form's "OnShow" event handler. Under GTK2 this is known to risk corrupt rendering of row images when the
control is first displayed. If necessary use "Application.QueueAsyncCall" to delay opening of the dataset (see
DBControlGrid examples) until the Form''s Window has been created. See the example application.

When you build and run your project and open the DataSource's dataset, the TDBControlGrid
should show a row for each row in the dataset and the child controls on each row should have the
appropriate values for the row.

When the grid has the focus, you can move between rows using the up and down arrow keys,
page Up and Page Down, Ctrl+Home and Ctrl+End jump to beginning and end respectively. You
can also use the mouse to change between rows, either by clicking on a row or the scroll bar.

Pressing the down arrow key on the last row should append a new row – as long as the “Disable
Insert” TDBControlGrid.Option is not selected.

All rows may be edited in situ. Moving between rows should automatically post the changes. The
“escape” key may be used to cancel row edits before they are posted.

A row may be deleted by calling the underlying DataSet's Delete method.

See the TDBControlGrid example code for guidance on how to use the control. This example
requires IBX and uses the Firebird example employee database.

3.2 TDBControlGrid Properties

DrawPanel TWinControl This control will be replicated for each row in the
DataSet. Typically a TPanel or a TFrame.

Options TPanelGridOptions Similar to a TDBGrid, but limited to:

• Cancel On Exit

10

 TDBControlGrid

• Disable Insert

• Show Indicator Column

DataSource TDataSource A row is replicated for every row in this dataset.

DefaultPositionAtEnd Boolean When the dataset is opened then it is initially
positioned at the last record if this property is true,

3.3 TDBControlGrid Events

OnKeyDownHander The TDBControlGrid uses a KeyDown handler to intercept edit keys
while the Draw Panel is active. For example, to process an “escape”
key as a cancel edit. You can write your own keydown handler to
modify this behaviour.

11

 TIBTreeView

4
TIBTreeView

4.1 Overview

13

Illustration 4: TIBTreeView Example

Dynamic Database Controls

TIBTreeView is a data aware descendent of a TCustomTreeView and is used to present a
hierarchically organised data set in a tree view. Tree Node Insertion, Deletion and Modification are
supported, as is moving (e.g. using drag and drop) nodes from one part of the tree to another. The
underlying dataset cursor is always positioned to reflect the currently selected tree node. It can
thus be used to select a row for detailed editing. SQL Manipulation is used to load the tree as a
series of separate queries.

Illustration 4 Is taken from ibx/examples/ibtreeview and uses the Firebird example “employee”
database. This database contains a hierarchically organised table “DEPARTMENT” and which is
used for the example.

To use a TIBTreeView, simply drop it on to a form, set the DataSource property, and, as a
minimum, the TextField, ParentField and KeyField properties as defined below.

The DataSet must have a single primary key field.

4.2 TIBTreeView Properties

DataSource TDataSource Identifies the source of the data to present using
the tree view

TextField string The field name of the column used to source each
node's display text

KeyField string The field name of the column used to source each
node's primary key.

ParentField string The field name of the column used to identify the
primary key of the parent row. This field is null for
a root element.

HasChildField string Optional. The field name of the column used to
indicate whether or not the row has child nodes.
When present, the field should return an integer
value with non-zero values implying that child
nodes exist.

RelationName string Optional. The Child Field is typically the result of
joining the table to itself and is a count of child
rows. However, this can result in ambiguous
column names when the SQL is manipulated. This
property should contain the Table Alias used to
select the Key, Text and Parent Fields (see
example application).

ImageIndexField string Optional. If specified then the image index for
each node is read from this (integer) field.

SelectedIndexField string Optional. If specified then the selected image
index for each node is read from this (integer)

14

 TIBTreeView

field.

4.3 TIBTreeView Methods

function GetNodePath(Node: TTreeNode): TVariantArray

Returns a Variant array containing the primary key values of the Node and its parents from the root
node downwards.

function FindNode(KeyValuePath: TVariantArray; SelectNode: boolean): TIBTreeNode;

Returns the TTreeNode identified by the KeyValuePath. The KeyValuePath is an array comprising a
list of primary key values walking the tree down from the root node to the requested node.

If SelectNode is true then the returned node is also selected.

This function can be used to select the tree node using the node path returned by an earlier call to
the function GetNodePath.

function FindNode(KeyValue: variant): TIBTreeNode;

Returns the tree node with the primary key given by KeyValue. Note: this forces the whole tree to
be loaded by a call to TCustomTreeView.FullExpand.

4.4 Drag and Drop

Drag and drop is supported by TCustomTreeView without the need for additional support from
TIBTreeView. In the example, drag and drop is enabled by:

• DragMode set to automatic

• The OnDragOver Event handled by:

procedure TForm1.IBTreeView1DragOver(Sender, Source: TObject; X, Y: Integer;
 State: TDragState; var Accept: Boolean);
begin
 Accept := Source = Sender
end;

• The OnDragDrop Event Handled by:

procedure TForm1.IBTreeView1DragDrop(Sender, Source: TObject; X, Y: Integer);
var Node: TTreeNode;
 tv: TTreeView;
begin
 if Source = Sender then {Dragging within Tree View}
 begin
 tv := TTreeView(Sender);;
 Node := tv.GetNodeAt(X,Y); {Drop Point}
 if assigned(tv.Selected) and (tv.Selected <> Node) then
 begin
 if Node = nil then
 tv.Selected.MoveTo(nil,naAdd) {Move to Top Level}
 else
 begin

15

Dynamic Database Controls

 if ssCtrl in GetKeyShiftState then
 begin
 Node.Expand(false);
 tv.Selected.MoveTo(Node,naAddChildFirst)
 end
 else
 tv.Selected.MoveTo(Node,naInsertBehind)
 end;
 end;
 end;
end;

Note that the above applies the convention that if the “control” key is held down while the node is “dropped”
then it is added as a child node. Otherwise, it is added as a sibling.

4.5 Setting Query Parameters

The dataset used as the TIBTreeView's data source may have a select query that contains query
parameters. However, in order to determine child nodes, TIBTreeView manipulates the SQL query
“behind the scenes” to change the “Where” clause in order to select only the current node and its
child nodes. Because of this, the only “safe” place to set values for query parameters is in the in
dataset's “BeforeOpen” event handler. This is guaranteed to be called every time the control
updates the SQL where clause and re-executes the query.

Parameter values set before the dataset is opened and outside of the “BeforeOpen” event handler will be lost
when the control updates the SQL and reset to the default null value.

16

 TIBLookupComboEditBox

5
TIBLookupComboEditBox

5.1 Overview

TIBLookupComboEditBox is a TDBLookupComboBox descendent that implements "autocomplete" of
typed in text and "autoinsert" of new entries.

• Autocomplete uses SQL manipulation to revise the available list and restrict it to items that
are prefixed by the typed text (either case sensitive or case insensitive).

• Autoinsert allows a newly typed entry to be added to the list dataset and included in the
available list items.

Although TDBLookupComboBox also supports auto-complete, the benefit of using
TIBLookupComboEditBox comes with long lookup lists as typing in one or more characters forces
the list to be queried again and restricted to list members beginning with the same characters. The
list of alternatives becomes much shorter.

Auto-insert normally uses the list dataset's insert query to add a new row and depends upon the
dataset's “After Insert” event handler to set the other fields of the row to appropriate values and/or
the generator assigned to the dataset.

17

Dynamic Database Controls

5.2 TIBLookupComboEditBox Example

The above example can be found in ibx/examples/lookupcombobox and uses the Firebird
“employee” example database. The “Employee Name” is a TIBLookupComboEditBox and is used
here to:

a) Select an employee record for editing

b) Initiate the entry of a new employee record.

First, you should explore the use of the new control. Click on the drop down arrow and a drop
down list of all employee names (in lastname/firstname syntax) will be shown. This is typically
longer than can be displayed on a single screen.

18

Illustration 5: Using the TIBLookupComboEditBox

 TIBLookupComboEditBox

Now close the drop down list, select all characters in the Employee Name edit box and enter “pa”.
After a short (600ms) delay, after you stop typing, the employee details should change to that
shown in Illustration 6 i.e. for the first employee with a lastname beginning with “pa”, i.e. Mary
Page.

Of course, auto-complete to the first employee beginning “pa” may not get the actual employee you
want. Now click on the drop down list and this will show all employees with a last name starting
with “pa”. This is a much shorter list than the full list and allows you to quickly focus in on the
employee you want.

Indeed, this can also be done from the keyboard. Start again, and enter “pa”, now press the down
arrow and you can cycle quickly through all employees starting “pa”. The up arrow also works. Use
the Enter key to select the employee record.

Alternatively, after entering “pa” and seeing the entry for Mary Page, then press “r” to extend the
entry to “par” and you get the record for Bill Parker.

To return to the full list, just press the escape key while the control has the focus.

5.2.1 Auto-insert

Auto-insert allows quick insertion of new employee records. For example, start by selecting all text
in the Employee Name edit box and enter the name of the new employee (e.g. Smith, John), and
press the “Enter” key. You should now get a prompt confirming the entry of the new employee
record:

19

Illustration 6: Selection of a Different Employee

Dynamic Database Controls

If you click on “yes” then a new employee record is created and displayed as show below.

The employee name is parsed from the text entered into the Employee Name box. The remaining
fields come from defaults taken from the “OnInsert” event handler. You can now amend the
defaults as required.

5.3 TIBLookupComboEditBox Properties

TIBLookupComboEditBox inherits TDBLookupComboBox properties. In addition, it defines:

AutoInsert Boolean Set to true to enable auto-insert

AutoComplete Boolean Default: true in TIBLookupComboEditBox

KeyPressInterval Integer Delay in milliseconds between last key press and
auto-complete (Default: 500ms).

RelationName String TIBLookupComboEditBox updates the “Where”
clause in the ListSource select SQL query in order
to refine the list, and uses the value of the

20

Illustration 7: New Employee Record

 TIBLookupComboEditBox

“ListField” property as the column name. If this
name is ambiguous in the SQL query then the
“RelationName” property must be set to the name
of the table or table alias to qualify the column
name and remove the ambiguity.

5.4 TIBLookupComboEditBox Event Handlers

OnAutoInsert TIBLookupComboEditBox will normally use the ListSource's
Insert query to perform auto-insert. If this is not possible or
inappropriate then an OnAutoInsert handler must be provided to
perform the insertion. The handler is provided with the value of
the display text to insert and must return the new key value.

OnCanAutoInsert This handler is called immediately before auto-insertion is
performed and is typically used to validate the insert and obtain
user agreement (e.g. via a dialog box). The handler is provided
with the value of the display text to insert and must set the
“Accept” boolean on return to true to accept the insert or to false
to reject it.

5.5 Setting Query Parameters

The dataset used as the TIBLookupComboEditBox data source may have a select query that
contains query parameters. However, in order to perform auto-complete, TIBLookupComboEditBox
manipulates the SQL query “behind the scenes” to change the “Where” clause in order to select
only the rows matching the current text (as a prefix). Because of this, the only “safe” place to set
values for query parameters is in the in dataset's “BeforeOpen” event handler. This is guaranteed
to be called every time the control updates the SQL where clause and re-executes the query.

Parameter values set before the dataset is opened and outside of the “BeforeOpen” event handler will be lost
when the control updates the SQL and reset to the default null value.

21

 TIBArrayGrid

6
TIBArrayGrid

6.1 Overview

TIBArrayGrid is a visual control that can be linked to a TIBArrayField and used to display/edit the
contents of a one or two dimensional Firebird array. It may be found in the “Firebird Data Controls”
palette.

To use a TIBArrayGrid, simply drop it onto a form and set the DataSource property to the source
dataset and the DataField property to the name of an array field. The grid should then be
automatically sized to match the dimensions of the array.

Note that the array bounds can be refreshed at any time in the IDE, by right clicking on the control and
selecting "Update Layout" from the pop up menu.

At runtime, the TIBArrayGrid will always display/edit the value of the array element in the current
row. If this element is null then the array is empty. However, data can be inserted into an empty
array. When the row is posted, the field will be set to the new/updated array.

6.2 Properties

Most TIBArrayGrid properties are the same as for TStringGrid. The following are specific to
TIBArrayGrid. Note that you cannot set the Row or column counts directly as these are always set
to match the array field.

Public Properties

DataSet The DataSet provided by the DataSource (read only).

Field The source field (must provide the IArrayField interface)

23

Dynamic Database Controls

Published:

DataField The name of the array column.

DataSource The data source providing the source table.

ReadOnly Set to true to prevent editing

ColumnLabels A string list that provides the labels for each column in the grid.
Provide one line per column. If non empty then a column label
row is created as a fixed row at the top of the grid.

ColumnLabelAlignment Sets the text alignment for column Labels

ColumnLabelFont Sets the font used for column labels

RowLabels A string list that provides the labels for each row in the grid.
Provide one line per row. If non empty then a row label column
is created as a fixed column to the left of the grid.

RowLabelAlignment Sets the text alignment for row Labels

RowLabelFont Sets the font used for row labels

RowLabelColumnWidth Width of the Fixed Column used for row labels.

TextAlignment Alignment of all cells other that those containing labels.

6.3 Examples

Example applications are provided for both one and two dimensional arrays. In each case, the
example applications create their own database and populate it with test data when first run. Note
that you will typically need to run the application before accessing database properties in the IDE.
This is in order to create the database referenced by the IDE.

6.3.1 Database Creation

The TIBDatabase property “CreateIfNotExists” is set to true in both examples. This means that if
the database does not exist when an attempt is made to connect to it then the database is created.
After it is created, the “OnCreateDatabase” event handler is used to add a table to the newly
created database and to populate it with test data. The application then continues as if the
database already existed.

By default, the database is created in the defined temporary directory. This behaviour can be
overridden by editing the example's “unit1” unit to remove the “{$DEFINE LOCALDATABASE}”
directive and setting the const “sDatabaseName” to the required path e.g.

const
 sDatabaseName = 'myserver:/databases/test.fdb';

24

 TIBArrayGrid

6.3.2 1D Array Example

A screenshot from this example program is illustrated below.

In this case, the test data table is defined as

Create Table TestData (
 RowID Integer not null,
 Title VarChar(32) Character Set UTF8,
 MyArray Double Precision [1:12],
 Primary Key(RowID)
);

Each row includes a floating point array with twelve elements. In the example application, the table
is displayed and edited using a DBControlGrid. The title field is interpreted as a “Department” and
displayed using a TDBEdit control. The array field is interpreted as sales by month and displayed
as a one dimensional TIBArrayGrid with column labels. The example allows both the Department
Name and monthly sales values to be updated and changes saved. New rows can be inserted and
existing rows deleted.

Note: there is an LCL bug (http://bugs.freepascal.org/view.php?id=30892) which will cause the 1D array
example to render incorrectly under Windows. That is only the focused row will show the array. The bug
report includes an LCL patch to fix this problem. It is believed to be fixed in Lazarus 1.8.0.

6.3.3 2D Array Example

A screenshot from this example program is illustrated below.

25

http://bugs.freepascal.org/view.php?id=30892

Dynamic Database Controls

In this case, the test data table is defined as

Create Table TestData (
 RowID Integer not null,
 Title VarChar(32) Character Set UTF8,
 MyArray VarChar(16) [0:16, -1:7] Character Set UTF8,
 Primary Key(RowID)
);

Each row includes a two dimensional string array with indices 0..16 and -1 to 7. The grid interprets
the first index as a column index and the second as a row index (i.e. x,y Cartesian co-ordinates).

The example program displays a row at a time with a navigation bar providing the means to scroll
through the dataset, as well as saving or cancelling changes, inserting and deleting rows.

This example illustrates the use of both column and row labels.

26

 Interface Specification

7
Interface Specification

The Dynamic Database Controls both provide a Pascal Interface to a Database Access Provider
(e.g. IBX) and expect the Database Access Provider to provide a Pascal Interface. These
interfaces are specified below and are used to support the dynamic aspects of the controls.

The purpose of these interfaces is to define a set of interfaces that permit the IBControls package
to be independent of the IBX package. These interfaces are provided by IBX but may also be
provided by other database adapters for Firebird and other databases.

Note the use of CORBA interfaces. In this mode, the interface is not a managed type. Any objects providing
such an interface must be both explicitly created and destroyed.

7.1 The IDynamicSQLDataset interface

The IDynamicSQLDataset interface is used to register/unregister a dynamic SQL component with
a dataset providing this interface. The component must provide the IDynamicSQLComponent.
Interface (see below) Otherwise an exception is raised when RegisterDynamicComponent is
called.

Declaration:

type
 TDynamicDatasetCapability = (dcChangeDatasetOrder, {supports OrderBy, GetOrderByClause
 and SetOrderByClause interfaces}
 dcUpdateWhereClause, {supports Add2WhereClause interface}
 dcSetParams); {supports IDynamicSQLParam}

 TDynamicDatasetCapabilities = set of TDynamicDatasetCapability;

 IDynamicSQLDataset = interface
 ['{c94afb6a-a28d-4b2b-b62e-8611816cf21e}']
 procedure RegisterDynamicComponent(aComponent: TComponent);
 procedure UnRegisterDynamicComponent(aComponent: TComponent);
 function GetCapabilities: TDynamicDatasetCapabilities;
 end;

27

Dynamic Database Controls

A Database Access Provider is always a TDataset descendent and provided to the control via a
TDataSource. At runtime, a control uses the Pascal “is” operator to see if this dataset provides the
IDynamicSQLDataset interface. If this interface is not provided then this is silently ignored - but
reduced functionality may be observed (see table below).

If the interface is provided then the Pascal “as” operator is used to access the interface and to test
the interface's capabilities by calling the GetCapabilities method. If the required capabilities are
not provided then this is also silently ignored as above.

Note: this interface is not used by TDBControlGrid and TIBArrayGrid.

The capabilities required by each control are given in the following table:

Control Required Capabilities Reduced Functionality when
not available

TIBDynamicGrid dcChangeDatasetOrder Dynamic column sorting not
available.

TDBControlGrid None

TIBTreeView dcUpdateWhereClause,
dcSetParams

Control is effectively unusable

TIBLookupComboEditBox dcUpdateWhereClause,
dcChangeDatasetOrder

Reverts to
TDBLookupComboBox

TIBArrayGrid N/A

If the IDynamicSQLDataset interface is provided and required capabilities are available then the
control registers with the dataset by calling the IDynamicSQLDataset.RegisterDynamicComponent
interface.

7.1.1 TDataset Requirements

A dataset providing the IDynamicSQLDataset interface shall:

1. Test that each registered control provides the IDynamicSQLComponent interface (using the
Pascal “is” operator) and raise an exception if a control not providing this interface attempts
to register with it.

2. Keep a list of controls that are currently registered with it and remove a control from the list
if the control subsequently calls the interface's Unregisterdynamiccomponent method.

3. Override its TDataset.DoBeforeOpen method and

a) Perform any required SQL Filtering before

b) calling each registered control's IDynamicSQLComponent.UpdateSQL method

c) calling the inherited OnBeforeUpdate method and finally

28

 Interface Specification

d) If the dcSetParams capability is supported, calling each registered control's
IDynamicSQLComponent.SetParams method.

4. When the UpdateSQL method is called, the dataset provides a IDynamicSQLEditor
interface. This allows the control to edit the SQL text using the IDynamicSQLEditor
methods are constrained by the supported capabilities.

5. When the SetParams is called, the dataset provides an IDynamicSQLParam interface. This
allows the control to set query parameters using IBX parameter name conventions.

7.2 The IDynamicSQLComponent interface

The IDynamicSQLComponent interface is provided by a Dynamic SQL Component such as the
Dynamic Database Controls. This interface is used by a Dynamic SQL Dataset to tell the
component when it should Update the SQL and when it should set parameters. The UpdateSQL
procedure is called before the dataset is opened and before the OnBeforeOpen event is called.
The SetParams procedure is called before the dataset is opened and after the OnBeforeOpen
event is called. This sequence allows a user to set dataset parameters in an OnBeforeOpen event
handler, while allowing the component priority over setting any parameter values - typically those
included in conditional parts to the Where Clause added by the component.

It also allows the user to perform additional SQL editing as part of an OnBeforeOpen event
handler.

 IDynamicSQLComponent = interface
 ['{4814f5fd-9292-4028-afde-0106ed00ef84}']
 procedure UpdateSQL(SQLEditor: IDynamicSQLEditor);
 procedure SetParams(SQLParamProvider: IDynamicSQLParam);
 end;

Note: a component must provide both methods even when it does not use them. In such cases, the method
implementation is empty.

The UpdateSQL method may be used to perform SQL editing. For example, an TIBDynamicGrid
may change the dataset sort order to correspond with the last time a user clicked on a column
heading.

The SetParams method may be used to set a query parameter. For example, a TIBTreeView uses
this method to set the current root element.

7.3 The IDynamicSQLEditor interface

The IDynamicSQLEditor interface allows a user to update the dataset's select SQL and is provided
as a parameter to IDynamicSQLComponent.UpdateSQL.

In the IBX implementation, this interface is provided by an instance of the TSelectSQLParser class,
created by the dataset for the purpose of SQL editing.

 IDynamicSQLEditor = interface
 ['{3367a89a-4059-49c5-b25f-3ff0fa4f3d55}']
 procedure OrderBy(fieldname: string; ascending: boolean);
 procedure Add2WhereClause(const Condition: string; OrClause: boolean=false;
 IncludeUnions: boolean = false);
 function QuoteIdentifierIfNeeded(const s: string): string;
 function SQLSafeString(const s: string): string;

29

Dynamic Database Controls

 function GetOrderByClause: string;
 procedure SetOrderByClause(const Value: string);
 end;

7.3.1 Methods

Method Required Action Capability

OrderBy the select SQL Order By clause is updated to
order the dataset by the given field name in
ascending or descending order.

dcChangeDatasetOrder

Add2WhereClause the select SQL Where clause is updated to
add the provided condition. This condition may
include parameters in the IBX parameter
syntax i.e. a valid SQL identifier preceded by
a colon.

Note this is the same syntax as used in
procedural SQL.

When “OrClause” is true, the condition is
added as an “Or” to any existing condition.
Otherwise, it is added as an “And”.

When “IncludeUnions” is true, the condition is
added to the Where clause of every union in
the select statement. Otherwise, only the first
is updated.

dcUpdateWhereClause

QuoteIdentifierIfNeeded The returned value is the same as that given
by the parameter but double quoted if the
parameter is not a valid SQL Identifier.

SQLSafeString parses a text string and adds escapes any
unsafe SQL sequences e.g.. embedded single
quotes.

GetOrderByClause Returns the current text for the Select SQL
Order By clause

dcChangeDatasetOrder

SetOrderByClause Replaces the current text for the Select SQL
Order By clause with “Value”.

dcChangeDatasetOrder

7.4 The IDynamicSQLParam interface

The IDynamicSQLParam interface is provided by a Dynamic SQL Dataset. This allows the caller to
set query parameter values to any valid value for the parameter type, including the "null" value.

30

 Interface Specification

The interface is provided as a parameter to the IDynamicSQLComponent.SetParams method. This
method is only called when the dataset provides the dcSetParams capability.

Parameters are accessed by parameter name where a name is a valid SQL identifier preceded by
a colon (':').

 IDynamicSQLParam = interface
 ['{02dc5296-25e0-4767-95f5-9a4a29a89ddb}']
 function GetParamValue(ParamName: string): variant;
 procedure SetParamValue(ParamName: string; ParamValue: variant);
 end;

7.4.1 Methods

Method Required Action

GetParamValue Returns the current value, if any, of the named parameter.

SetParamValue Updates the the current value of the named parameter to that
provided.

7.5 The IArrayField interface

The IArrayField interface provides access to a TField instance that is for an array field.

When a field is assigned to a TIBArrayGrid, an exception is raised if it does not provide the
IArrayField interface.

IArrayField = interface(IArrayFieldDef)
 ['{1c2492a4-09c7-4515-852e-f6affc6f78da}']
 function IsEmpty: boolean;
 function GetEltAsString(index: array of integer): string;
 procedure SetEltAsString(index: array of integer; aValue: string);
 end;

FPC itself does not provide a TArrayField type as a standard subclass of TField. However, IBX
does provide a TIBArrayField as a TField subclass for support of Firebird array columns. The
IArrayField interface provides access to the additional methods of TIBArrayField whilst avoiding an
IBX dependency. In principle, another Database Access Provider could also provide its own
version of TIBArrayField and support the TIBArrayGrid control by also providing the IArrayField
interface.

7.5.1 Methods

Method Required Action

IsEmpty Returns true if the array is empty.

GetEltAsString
Returns the current value, as a text string, of the identified array
element. Note the index is an array of integers, one integer for each

31

Dynamic Database Controls

dimension of the array.

SetEltAsString Updates the the current value of the identified array element. Note
the index is an array of integers, one integer for each dimension of
the array.

7.6 The IArrayFieldDef interface

IBX provides a TIBArrayDef class as a subclass of TFieldDef. This class provides access to
additional information about the array. The IArrayFieldDef interface allows a TIBArrayGrid to
access this information whilst avoiding an IBX dependency.

TIBArrayGrid searches the dataset's field defs to find the fielddef for the array field (by name) and
expects this fielddef to provide the IArrayFieldDef interface. An exception is raised if it does not.

IArrayFieldDef = interface
 ['{10d1c460-168f-40a8-b98c-05c6971c09f5}']
 function GetArrayDimensions: integer;
 function GetArrayLowerBound(dim: integer): integer;
 function GetArrayUpperBound(dim: integer): integer;
 end;

7.6.1 Methods

Method Required Action

GetArrayDimensions Returns the number of dimensions in the array. Currently
TIBArrayFrid supports a maximum of two dimensions.

GetArrayLowerBound Gets the index of the lowest element in the given dimension.

GetArrayUpperBound Gets the index of the highest element in the given dimension.

32

	1 Introduction
	2 TIBDynamicGrid
	2.1 Overview
	2.2 Column Properties
	2.3 TIBDynamicGrid New Properties
	2.4 TIBDynamicGrid new Events
	2.5 The Editor Panel
	2.6 Setting Query Parameters

	3 TDBControlGrid
	3.1 Overview
	3.2 TDBControlGrid Properties
	3.3 TDBControlGrid Events

	4 TIBTreeView
	4.1 Overview
	4.2 TIBTreeView Properties
	4.3 TIBTreeView Methods
	4.4 Drag and Drop
	4.5 Setting Query Parameters

	5 TIBLookupComboEditBox
	5.1 Overview
	5.2 TIBLookupComboEditBox Example
	5.2.1 Auto-insert

	5.3 TIBLookupComboEditBox Properties
	5.4 TIBLookupComboEditBox Event Handlers
	5.5 Setting Query Parameters

	6 TIBArrayGrid
	6.1 Overview
	6.2 Properties
	6.3 Examples
	6.3.1 Database Creation
	6.3.2 1D Array Example
	6.3.3 2D Array Example

	7 Interface Specification
	7.1 The IDynamicSQLDataset interface
	7.1.1 TDataset Requirements

	7.2 The IDynamicSQLComponent interface
	7.3 The IDynamicSQLEditor interface
	7.3.1 Methods

	7.4 The IDynamicSQLParam interface
	7.4.1 Methods

	7.5 The IArrayField interface
	7.5.1 Methods

	7.6 The IArrayFieldDef interface
	7.6.1 Methods

