1 |
{Used by ISQLMonitor and implements System V IPC} |
2 |
|
3 |
const |
4 |
IPCFileName: string = 'FB.SQL.MONITOR1_0'; |
5 |
cNumberOfSemaphores = 10; |
6 |
cMutexSemaphore = 0; |
7 |
cMonitorCounter = 1; |
8 |
cReadReadyEventSemaphore = 2; |
9 |
cReadFinishedEventSemaphore = 4; |
10 |
cDataAvailableEventSemaphore = 6; |
11 |
cWriterBusyEventSemaphore = 8; |
12 |
cDefaultTimeout = 1; { 1 seconds } |
13 |
|
14 |
{$IF FPC_FULLVERSION = 30000 } |
15 |
{Fix regression in FPC 3.0.0 ipc.pp unit. Expected to be fixed in fpc 3.0.2} |
16 |
{$IF defined(darwin) } |
17 |
SEM_GETNCNT = 3; { Return the value of sempid (READ) } |
18 |
SEM_GETPID = 4; { Return the value of semval (READ) } |
19 |
SEM_GETVAL = 5; { Return semvals into arg.array (READ) } |
20 |
SEM_GETALL = 6; { Return the value of semzcnt (READ) } |
21 |
SEM_GETZCNT = 7; { Set the value of semval to arg.val (ALTER) } |
22 |
SEM_SETVAL = 8; { Set semvals from arg.array (ALTER) } |
23 |
SEM_SETALL = 9; |
24 |
{$ENDIF} |
25 |
{$ENDIF} |
26 |
|
27 |
{ |
28 |
The call to semctl in ipc is broken in FPC release 2.4.2 and earlier. Hence |
29 |
need to replace with a working libc call. semtimedop is not present in 2.4.2 and earlier. |
30 |
} |
31 |
|
32 |
{$IF FPC_FULLVERSION <= 20402 } |
33 |
Function real_semctl(semid:cint; semnum:cint; cmd:cint): cint; cdecl; varargs; external clib name 'semctl'; |
34 |
|
35 |
Function semctl(semid:cint; semnum:cint; cmd:cint; var arg: tsemun): cint; |
36 |
begin |
37 |
semctl := real_semctl(semid,semnum,cmd,pointer(arg)); |
38 |
end; |
39 |
{$IFDEF HAS_SEMTIMEDOP} |
40 |
Function semtimedop(semid:cint; sops: psembuf; nsops: cuint; timeOut: ptimespec): cint; cdecl; external clib name 'semtimedop'; |
41 |
{$ENDIF} |
42 |
Function semget(key:Tkey; nsems:cint; semflg:cint): cint; cdecl; external clib name 'semget'; |
43 |
Function semop(semid:cint; sops: psembuf; nsops: cuint): cint; cdecl; external clib name 'semop'; |
44 |
|
45 |
function GetLastErrno: cint; |
46 |
begin |
47 |
Result := fpgetCerrno |
48 |
end; |
49 |
{$ELSE} |
50 |
function GetLastErrno: cint; |
51 |
begin |
52 |
Result := fpgetErrno |
53 |
end; |
54 |
|
55 |
{$ENDIF} |
56 |
|
57 |
type |
58 |
TGlobalInterface = class; |
59 |
{Interprocess Communication Objects. All platform dependent IPC is abstracted |
60 |
into this set of objects } |
61 |
|
62 |
{ TIpcCommon } |
63 |
|
64 |
TIpcCommon = class |
65 |
private |
66 |
function GetSa: PSecurityAttributes; |
67 |
protected |
68 |
FInitialiser: boolean; static; |
69 |
FSemaphoreSetID: cint; static; |
70 |
FSharedMemoryID: cint; static; |
71 |
function sem_op(SemNum, op: integer; flags: cshort = 0): cint; |
72 |
function sem_timedop(SemNum, op: integer; timeout_secs: integer; flags: cshort = 0): cint; |
73 |
function GetSemValue(SemNum: integer): cint; |
74 |
procedure SemInit(SemNum, AValue: cint); |
75 |
public |
76 |
property Sa : PSecurityAttributes read GetSa; |
77 |
end; |
78 |
|
79 |
{ TSharedMemory } |
80 |
|
81 |
{ |
82 |
The shared memory segment is used for interprocess communication and |
83 |
holds both a message buffer and a number of shared variables. Shared |
84 |
memory is allocated to each shared variable using the Allocate function. |
85 |
An underlying assumption is that each process using the shared memory |
86 |
calls "Allocate" in the same order and for the same memory sizes. |
87 |
|
88 |
Linux: |
89 |
|
90 |
The Linux implementation uses Linux shared memory. IPC_PRIVATE is used |
91 |
to allocate the memory and the resulting memory id is written to a |
92 |
well known file. By default this is in the current user's home directory, |
93 |
but this can be over-ridden to specify a globally unique filename. |
94 |
|
95 |
Access to the shared memory is restricted to the current user/group. |
96 |
Note that the Linux semaphore set is also created with the shared memory. |
97 |
} |
98 |
|
99 |
TSharedMemory = class(TIpcCommon) |
100 |
private |
101 |
FBuffer: PChar; |
102 |
FLastAllocationSize: integer; |
103 |
FUnused: integer; |
104 |
FBufptr: PChar; |
105 |
procedure DropSharedMemory; |
106 |
procedure GetSharedMemory(MemSize: integer); |
107 |
public |
108 |
constructor Create(MemSize: integer); |
109 |
destructor Destroy; override; |
110 |
function Allocate(Size: integer): PChar; |
111 |
property LastAllocationSize: integer read FLastAllocationSize; |
112 |
end; |
113 |
|
114 |
{TMutex} |
115 |
|
116 |
TMutex = class(TIpcCommon) |
117 |
private |
118 |
FMutexSemaphore: cint; |
119 |
FLockCount: integer; |
120 |
public |
121 |
constructor Create(SemNumber: cint); |
122 |
procedure Lock; |
123 |
procedure Unlock; |
124 |
end; |
125 |
|
126 |
{ TSingleLockGate } |
127 |
|
128 |
{ |
129 |
A single lock gate is either open or closed. When open, any thread can pass |
130 |
through it while, when closed, all threads are blocked as they try to pass |
131 |
through the gate. When the gate is opened, all blocked threads are resumed. |
132 |
|
133 |
There is an implementation assumption that only one writer thread at |
134 |
a time (i.e. the thread which locks or unlocks the gate) can have access to |
135 |
it at any one time. I.e. an external Mutex prevents race conditions. |
136 |
|
137 |
Linux: |
138 |
|
139 |
In the Linux implementation, the gate is implemented by a semaphore |
140 |
and a share memory integer used as a bi-state variable. When the gate |
141 |
is open, the bi-state variable is non-zero. It is set to zero when closed. |
142 |
Another shared memory integer is used to count the number of waiting |
143 |
threads, and a second semaphore is used to protect access to this. |
144 |
|
145 |
The event semaphore is initialised to zero. When a thread passes through the gate |
146 |
it checks the state. If open, the thread continues. If closed then it |
147 |
increments the count of waiting threads and then decrements the semaphore |
148 |
and hence enters an indefinite wait state. |
149 |
|
150 |
When the gate is locked, the state is set to zero. When unlocked, the state |
151 |
is set to one and the semaphore incremented by the number of waiting threads, |
152 |
which itself is then zeroed. |
153 |
|
154 |
Always initialised to the Unlocked state |
155 |
} |
156 |
|
157 |
TSingleLockGate = class(TIpcCommon) |
158 |
private |
159 |
FOwner: TGlobalInterface; |
160 |
FSemaphore: cint; |
161 |
FMutex: cint; |
162 |
FSignalledState: PInteger; |
163 |
FWaitingThreads: PInteger; |
164 |
function GetWaitingThreads: integer; |
165 |
public |
166 |
constructor Create(SemNum: cint; AOwner: TGlobalInterface); |
167 |
property WaitingThreads: integer read GetWaitingThreads; |
168 |
public |
169 |
procedure PassthroughGate; |
170 |
procedure Unlock; |
171 |
procedure Lock; |
172 |
end; |
173 |
|
174 |
{ TMultilockGate } |
175 |
|
176 |
{ This type of Gate is used where several reader threads must pass |
177 |
through the gate before it can be opened for a writer thread. |
178 |
|
179 |
The reader threads register their interest by each locking the gate. |
180 |
The writer thread then waits on the locked gate until all the reader |
181 |
threads have separately unlocked the gate. |
182 |
|
183 |
There is an underlying assumption of a single writer. A Mutex must |
184 |
be used to control access to the gate from the writer side if this |
185 |
assumption is invalid. |
186 |
|
187 |
Linux: |
188 |
|
189 |
The Linux implementation uses a single semaphore to implement the gate, |
190 |
which is initialised to 1 (unlocked), and a count of the number of |
191 |
threads that have locked the gate (LockCount). A mutex semaphore |
192 |
protects access to the LockCount. When the gate is locked, the lockcount |
193 |
is incremented and, if the LockCount was originally zero, the semaphore is |
194 |
set to zero (Gate Closed). |
195 |
|
196 |
Unlocking the gate, is the reverse. The LockCount is decremented and, if it |
197 |
reaches zero, the semaphore is set to one (Gate Opened). |
198 |
|
199 |
When a writer passes through the gate, it checks the LockCount, if zero it |
200 |
proceeds to pass through the gate. Otherwise it decrements and waits on the |
201 |
semaphore. When the writer resumes, it increments the semaphore in order |
202 |
to return it to its unlocked state. The wait is a timed wait, as there is |
203 |
a risk that a reader thread may terminate while the gate is locked. If the |
204 |
LockCount is non-zero, it is decremented and the writer returns to wait on |
205 |
the gate. |
206 |
|
207 |
Always initialised to the Unlocked state |
208 |
} |
209 |
|
210 |
TMultilockGate = class(TIpcCommon) |
211 |
private |
212 |
FOnGateTimeout: TNotifyEvent; |
213 |
FOwner: TGlobalInterface; |
214 |
FSemaphore: cint; |
215 |
FMutex: cint; |
216 |
FLockCount: PInteger; |
217 |
function GetLockCount: integer; |
218 |
public |
219 |
constructor Create(SemNum: cint; AOwner: TGlobalInterface); |
220 |
procedure Lock; |
221 |
procedure Unlock; |
222 |
procedure PassthroughGate; |
223 |
property LockCount: integer read GetLockCount; |
224 |
property OnGateTimeout: TNotifyEvent read FOnGateTimeout write FOnGateTimeout; |
225 |
end; |
226 |
|
227 |
{ TGlobalInterface } |
228 |
|
229 |
TGlobalInterface = class(TIpcCommon) |
230 |
private |
231 |
FMaxBufferSize: integer; |
232 |
FSharedMemory: TSharedMemory; |
233 |
FWriteLock: TMutex; |
234 |
FBuffer: PChar; |
235 |
FTraceDataType, |
236 |
FBufferSize: PInteger; |
237 |
FTimeStamp: PDateTime; |
238 |
FReadReadyEvent: TMultiLockGate; |
239 |
FReadFinishedEvent: TMultiLockGate; |
240 |
FDataAvailableEvent: TSingleLockGate; |
241 |
FWriterBusyEvent: TSingleLockGate; |
242 |
function GetMonitorCount: integer; |
243 |
public |
244 |
constructor Create; |
245 |
destructor Destroy; override; |
246 |
procedure IncMonitorCount; |
247 |
procedure DecMonitorCount; |
248 |
procedure SendTrace(TraceObject: TTraceObject); |
249 |
procedure ReceiveTrace(TraceObject: TTraceObject); |
250 |
property DataAvailableEvent: TSingleLockGate read FDataAvailableEvent; |
251 |
property WriterBusyEvent: TSingleLockGate read FWriterBusyEvent; |
252 |
property ReadReadyEvent: TMultiLockGate read FReadReadyEvent; |
253 |
property ReadFinishedEvent: TMultiLockGate read FReadFinishedEvent; |
254 |
property WriteLock: TMutex read FWriteLock; |
255 |
property MonitorCount: integer read GetMonitorCount; |
256 |
property SharedMemory: TSharedMemory read FSharedMemory; |
257 |
property MaxBufferSize: integer read FMaxBufferSize; |
258 |
end; |
259 |
|
260 |
{ TSharedMemory } |
261 |
|
262 |
procedure TSharedMemory.GetSharedMemory(MemSize: integer); |
263 |
var F: cint; |
264 |
begin |
265 |
{Get the Shared Memory and Semaphore IDs from the Global File if it exists |
266 |
or create them and the file otherwise } |
267 |
|
268 |
repeat |
269 |
F := fpOpen(IPCFileName, O_WrOnly or O_Creat or O_Excl); |
270 |
if F < 0 then |
271 |
begin |
272 |
if fpgetErrno = ESysEEXIST {EEXIST} then |
273 |
begin |
274 |
{ looks like it already exists} |
275 |
Sleep(100); |
276 |
F := fpOpen(IPCFileName,O_RdOnly); |
277 |
if (F < 0) and (fpgetErrno = ESysENOENT {ENOENT}) then |
278 |
{probably just got deleted } |
279 |
else |
280 |
if F < 0 then |
281 |
IBError(ibxeCannotCreateSharedResource,['Error accessing IPC File - ' + |
282 |
StrError(fpgetErrno)]); |
283 |
end |
284 |
else |
285 |
IBError(ibxeCannotCreateSharedResource,['Error creating IPC File - ' + |
286 |
StrError(fpgetErrno)]); |
287 |
end |
288 |
else |
289 |
FInitialiser := true |
290 |
until F >= 0; |
291 |
|
292 |
if FInitialiser then |
293 |
begin |
294 |
FSharedMemoryID := shmget(IPC_PRIVATE,MemSize, IPC_CREAT or |
295 |
S_IRUSR or S_IWUSR or S_IRGRP or S_IWGRP); |
296 |
if FSharedMemoryID < 0 then |
297 |
IBError(ibxeCannotCreateSharedResource,['Cannot create shared memory segment - ' + |
298 |
StrError(fpgetErrno)]); |
299 |
|
300 |
FSemaphoreSetID := semget(IPC_PRIVATE, cNumberOfSemaphores,IPC_CREAT or |
301 |
S_IRUSR or S_IWUSR or S_IRGRP or S_IWGRP); |
302 |
if FSemaphoreSetID < 0 then |
303 |
IBError(ibxeCannotCreateSharedResource,['Cannot create shared semaphore set - ' + |
304 |
StrError(fpgetErrno)]); |
305 |
|
306 |
fpWrite(F,FSharedMemoryID,sizeof(FSharedMemoryID)); |
307 |
fpWrite(F,FSemaphoreSetID,sizeof(FSemaphoreSetID)); |
308 |
end |
309 |
else |
310 |
begin |
311 |
fpRead(F,FSharedMemoryID,sizeof(FSharedMemoryID)); |
312 |
fpRead(F,FSemaphoreSetID,sizeof(FSemaphoreSetID)); |
313 |
if GetSemValue(cMonitorCounter) = 0 then |
314 |
begin |
315 |
FInitialiser := true; |
316 |
//writeln('Opened file and is initialiser'); |
317 |
end |
318 |
end; |
319 |
fpClose(F); |
320 |
end; |
321 |
|
322 |
procedure TSharedMemory.DropSharedMemory; |
323 |
var ds: TShmid_ds; |
324 |
arg: tsemun; |
325 |
begin |
326 |
if shmctl(FSharedMemoryID,IPC_STAT,@ds) < 0 then |
327 |
IBError(ibxeSV5APIError,['Error getting shared memory info' + strError(fpgetErrno)]); |
328 |
if ds.shm_nattch = 0 then { we are the last one out - so, turn off the lights } |
329 |
begin |
330 |
shmctl(FSharedMemoryID,IPC_RMID,nil); |
331 |
semctl(FSemaphoreSetID,0,IPC_RMID,arg); |
332 |
DeleteFile(IPCFileName); |
333 |
end; |
334 |
end; |
335 |
|
336 |
constructor TSharedMemory.Create(MemSize: integer); |
337 |
begin |
338 |
inherited Create; |
339 |
FInitialiser := false; |
340 |
GetSharedMemory(MemSize); |
341 |
FBuffer := shmat(FSharedMemoryID,nil,0); |
342 |
if PtrInt(FBuffer) = -1 then |
343 |
IBError(ibxeCannotCreateSharedResource,[StrError(Errno)]); |
344 |
FBufPtr := FBuffer; |
345 |
FUnused := MemSize |
346 |
end; |
347 |
|
348 |
destructor TSharedMemory.Destroy; |
349 |
begin |
350 |
shmdt(FBuffer); |
351 |
DropSharedMemory; |
352 |
inherited Destroy; |
353 |
end; |
354 |
|
355 |
function TSharedMemory.Allocate(Size: integer): PChar; |
356 |
begin |
357 |
if Size > FUnused then |
358 |
IBError(ibxeCannotCreateSharedResource, ['Not enough shared memory']); |
359 |
Result := FBufPtr; |
360 |
|
361 |
if Size = 0 then |
362 |
begin |
363 |
FLastAllocationSize := FUnused; |
364 |
FUnused := 0 |
365 |
end |
366 |
else |
367 |
begin |
368 |
FLastAllocationSize := Size; |
369 |
Dec(FUnused,Size); |
370 |
end; |
371 |
Inc(FBufPtr,Size) |
372 |
end; |
373 |
|
374 |
{ TIpcCommon } |
375 |
|
376 |
function TIpcCommon.GetSa: PSecurityAttributes; |
377 |
begin |
378 |
Result := nil |
379 |
end; |
380 |
|
381 |
function TIpcCommon.sem_op(SemNum, op: integer; flags: cshort): cint; |
382 |
var sembuf: TSEMbuf; |
383 |
begin |
384 |
sembuf.sem_num := SemNum; |
385 |
sembuf.sem_op:= op; |
386 |
sembuf.sem_flg := flags or SEM_UNDO; |
387 |
Result := semop(FSemaphoreSetID,@sembuf,1); |
388 |
end; |
389 |
|
390 |
function TIpcCommon.sem_timedop(SemNum, op: integer; timeout_secs: integer; |
391 |
flags: cshort): cint; |
392 |
var sembuf: TSEMbuf; |
393 |
timeout: TimeSpec; |
394 |
begin |
395 |
sembuf.sem_num := SemNum; |
396 |
sembuf.sem_op:= op; |
397 |
sembuf.sem_flg := flags or SEM_UNDO; |
398 |
timeout.tv_sec := timeout_secs; |
399 |
timeout.tv_nsec := 0; |
400 |
{$IFDEF HAS_SEMTIMEDOP} |
401 |
Result := semtimedop(FSemaphoreSetID,@sembuf,1,@timeout); |
402 |
{$ELSE} |
403 |
Result := semop(FSemaphoreSetID,@sembuf,1); {May hang on race condition} |
404 |
{$ENDIF} |
405 |
end; |
406 |
|
407 |
function TIpcCommon.GetSemValue(SemNum: integer): cint; |
408 |
var args :TSEMun; |
409 |
begin |
410 |
Result := semctl(FSemaphoreSetID,SemNum,SEM_GETVAL,args); |
411 |
if Result < 0 then |
412 |
IBError(ibxeSV5APIError,['GetSemValue: '+strError(GetLastErrno)]); |
413 |
end; |
414 |
|
415 |
procedure TIpcCommon.SemInit(SemNum, AValue: cint); |
416 |
var args :TSEMun; |
417 |
begin |
418 |
//writeln('Initialising ',SemNum,' to ',AValue); |
419 |
args.val := AValue; |
420 |
if semctl(FSemaphoreSetID,SemNum,SEM_SETVAL,args) < 0 then |
421 |
IBError(ibxeCannotCreateSharedResource,['Unable to initialise Semaphone ' + |
422 |
IntToStr(SemNum) + '- ' + StrError(GetLastErrno)]); |
423 |
|
424 |
end; |
425 |
|
426 |
{ TMutex } |
427 |
|
428 |
constructor TMutex.Create(SemNumber: cint); |
429 |
begin |
430 |
inherited Create; |
431 |
FMutexSemaphore := SemNumber; |
432 |
if FInitialiser then |
433 |
SemInit(FMutexSemaphore,1) |
434 |
end; |
435 |
|
436 |
{ Obtain ownership of the Mutex and prevent other threads from accessing protected resource } |
437 |
|
438 |
procedure TMutex.Lock; |
439 |
begin |
440 |
//writeln('Lock: Entering Mutex ',FMutexSemaphore,' LockCount=',FLockCount,' State = ',GetSemValue(FMutexSemaphore)); |
441 |
if FLockCount = 0 then |
442 |
sem_op(FMutexSemaphore,-1); |
443 |
Inc(FLockCount); |
444 |
//writeln('Lock: Mutex Exit'); |
445 |
end; |
446 |
|
447 |
{Give up ownership of the Mutex and allow other threads access } |
448 |
|
449 |
procedure TMutex.Unlock; |
450 |
begin |
451 |
//writeln('UnLock: Entering Mutex, LockCount=',FLockCount); |
452 |
if FLockCount = 0 then Exit; |
453 |
Dec(FLockCount); |
454 |
if FLockCount = 0 then |
455 |
sem_op(FMutexSemaphore,1); |
456 |
//writeln('UnLock: Mutex Exit',' State = ',GetSemValue(FMutexSemaphore)); |
457 |
end; |
458 |
|
459 |
{ TSingleLockGate } |
460 |
|
461 |
function TSingleLockGate.GetWaitingThreads: integer; |
462 |
begin |
463 |
Result := FWaitingThreads^ |
464 |
end; |
465 |
|
466 |
constructor TSingleLockGate.Create(SemNum: cint; AOwner: TGlobalInterface); |
467 |
begin |
468 |
inherited Create; |
469 |
FOwner := AOwner; |
470 |
FSignalledState := PInteger(FOwner.SharedMemory.Allocate(sizeof(FSignalledState))); |
471 |
FWaitingThreads := PInteger(FOwner.SharedMemory.Allocate(sizeof(FWaitingThreads))); |
472 |
FSemaphore := SemNum; |
473 |
FMutex := SemNum + 1; |
474 |
if FInitialiser then |
475 |
begin |
476 |
FSignalledState^ := 1; |
477 |
FWaitingThreads^ := 0; |
478 |
SemInit(FSemaphore,0); |
479 |
SemInit(FMutex,1); |
480 |
end; |
481 |
end; |
482 |
|
483 |
procedure TSingleLockGate.PassthroughGate; |
484 |
begin |
485 |
if FSignalledState^ = 0 then |
486 |
begin |
487 |
sem_op(FMutex,-1,0); //Acquire Mutex |
488 |
Inc(FWaitingThreads^); |
489 |
sem_op(FMutex,1,0); //Release Mutex |
490 |
//writeln(ClassName + ': Wait State Entered ',FSemaphore,' = ',GetSemValue(FSemaphore)); |
491 |
sem_op(FSemaphore,-1,0); //Enter Wait |
492 |
//writeln(ClassName + ': Wait State Ends ',FSemaphore); |
493 |
end; |
494 |
end; |
495 |
|
496 |
procedure TSingleLockGate.Unlock; |
497 |
begin |
498 |
if FSignalledState^ = 0 then |
499 |
begin |
500 |
FSignalledState^ := 1; |
501 |
sem_op(FMutex,-1,0); //Acquire Mutex |
502 |
//writeln(ClassName + ': Unlocking' ,FSemaphore); |
503 |
sem_op(FSemaphore,FWaitingThreads^,0); |
504 |
FWaitingThreads^ := 0; |
505 |
sem_op(FMutex,1,0); //Release Mutex |
506 |
end; |
507 |
end; |
508 |
|
509 |
procedure TSingleLockGate.Lock; |
510 |
begin |
511 |
if FSignalledState^ = 1 then |
512 |
begin |
513 |
//writeln(ClassName + ': Locking Gate ',FSemaphore); |
514 |
SemInit(FSemaphore,0); |
515 |
FSignalledState^ := 0; |
516 |
end; |
517 |
end; |
518 |
|
519 |
{ TMultilockGate } |
520 |
|
521 |
constructor TMultilockGate.Create(SemNum: cint; AOwner: TGlobalInterface); |
522 |
begin |
523 |
inherited Create; |
524 |
FOwner := AOwner; |
525 |
FSemaphore := SemNum; |
526 |
FMutex := SemNum + 1; |
527 |
FLockCount := PInteger(FOwner.SharedMemory.Allocate(sizeof(FLockCount))); |
528 |
if FInitialiser then |
529 |
begin |
530 |
FLockCount^ := 0; |
531 |
SemInit(FSemaphore,1); |
532 |
SemInit(FMutex,1); |
533 |
end; |
534 |
end; |
535 |
|
536 |
function TMultilockGate.GetLockCount: integer; |
537 |
begin |
538 |
Result := FLockCount^ |
539 |
end; |
540 |
|
541 |
procedure TMultilockGate.Lock; |
542 |
begin |
543 |
sem_op(FMutex,-1,0); //Acquire Mutex |
544 |
if FLockCount^ = 0 then |
545 |
begin |
546 |
//writeln(ClassName,': Locking ',FSemaphore); |
547 |
SemInit(FSemaphore,0); |
548 |
end; |
549 |
Inc(FLockCount^); |
550 |
sem_op(FMutex,1,0); //Release Mutex |
551 |
end; |
552 |
|
553 |
procedure TMultilockGate.Unlock; |
554 |
begin |
555 |
sem_op(FMutex,-1,0); //Acquire Mutex |
556 |
Dec(FLockCount^); |
557 |
if FLockCount^ <= 0 then |
558 |
begin |
559 |
//writeln(ClassName,': UnLocking ',FSemaphore); |
560 |
SemInit(FSemaphore,1); |
561 |
FLockCount^ := 0 |
562 |
end; |
563 |
sem_op(FMutex,1,0); //Release Mutex |
564 |
end; |
565 |
|
566 |
procedure TMultilockGate.PassthroughGate; |
567 |
begin |
568 |
if FLockCount^ = 0 then |
569 |
Exit; |
570 |
//writeln(ClassName,': Waiting on ',FSemaphore); |
571 |
while sem_timedop(FSemaphore,-1,cDefaultTimeout) < 0 do |
572 |
{looks like we lost a reader} |
573 |
begin |
574 |
if FLockCount^ > 0 then |
575 |
begin |
576 |
UnLock; |
577 |
if assigned(FOnGateTimeout) then |
578 |
OnGateTimeout(self) |
579 |
end |
580 |
end; |
581 |
sem_op(FSemaphore,1); |
582 |
//writeln(ClassName,': Wait done on ',FSemaphore); |
583 |
end; |
584 |
|
585 |
|
586 |
{ TGlobalInterface } |
587 |
|
588 |
function TGlobalInterface.GetMonitorCount: integer; |
589 |
begin |
590 |
Result := GetSemValue(cMonitorCounter) |
591 |
end; |
592 |
|
593 |
constructor TGlobalInterface.Create; |
594 |
begin |
595 |
inherited Create; |
596 |
FSharedMemory := TSharedMemory.Create(cMonitorHookSize); |
597 |
|
598 |
FWriteLock := TMutex.Create(cMutexSemaphore); |
599 |
|
600 |
FDataAvailableEvent := TSingleLockGate.Create(cDataAvailableEventSemaphore,self); |
601 |
FWriterBusyEvent := TSingleLockGate.Create(cWriterBusyEventSemaphore,self); |
602 |
FReadReadyEvent := TMultiLockGate.Create(cReadReadyEventSemaphore,self); |
603 |
FReadFinishedEvent := TMultiLockGate.Create(cReadFinishedEventSemaphore,self); |
604 |
|
605 |
if FInitialiser then |
606 |
SemInit(cMonitorCounter,0); |
607 |
FTraceDataType := PInteger(FSharedMemory.Allocate(sizeof(Integer))); |
608 |
FTimeStamp := PDateTime(FSharedMemory.Allocate(sizeof(TDateTime))); |
609 |
FBufferSize := PInteger(FSharedMemory.Allocate(sizeof(Integer))); |
610 |
FBuffer := FSharedMemory.Allocate(0); //All remaining |
611 |
FMaxBufferSize := FSharedMemory.LastAllocationSize; |
612 |
|
613 |
if FInitialiser then |
614 |
begin |
615 |
FBufferSize^ := 0; |
616 |
FDataAvailableEvent.Lock |
617 |
end; |
618 |
end; |
619 |
|
620 |
destructor TGlobalInterface.Destroy; |
621 |
begin |
622 |
if assigned(FWriteLock) then FWriteLock.Free; |
623 |
if assigned(FDataAvailableEvent) then FDataAvailableEvent.Free; |
624 |
if assigned(FWriterBusyEvent) then FWriterBusyEvent.Free; |
625 |
if assigned(FReadReadyEvent) then FReadReadyEvent.Free; |
626 |
if assigned(FReadFinishedEvent) then FReadFinishedEvent.Free; |
627 |
if assigned(FSharedMemory) then FSharedMemory.Free; |
628 |
inherited Destroy; |
629 |
end; |
630 |
|
631 |
procedure TGlobalInterface.IncMonitorCount; |
632 |
begin |
633 |
sem_op(cMonitorCounter,1); |
634 |
end; |
635 |
|
636 |
procedure TGlobalInterface.DecMonitorCount; |
637 |
begin |
638 |
sem_op(cMonitorCounter,-1,IPC_NOWAIT); |
639 |
end; |
640 |
|
641 |
procedure TGlobalInterface.SendTrace(TraceObject: TTraceObject); |
642 |
begin |
643 |
FTraceDataType^ := Integer(TraceObject.FDataType); |
644 |
FTimeStamp^ := TraceObject.FTimeStamp; |
645 |
FBufferSize^ := Min(Length(TraceObject.FMsg), MaxBufferSize); |
646 |
Move(TraceObject.FMsg[1], FBuffer^, FBufferSize^); |
647 |
end; |
648 |
|
649 |
procedure TGlobalInterface.ReceiveTrace(TraceObject: TTraceObject); |
650 |
begin |
651 |
SetString(TraceObject.FMsg, FBuffer, FBufferSize^); |
652 |
TraceObject.FDataType := TTraceFlag(FTraceDataType^); |
653 |
TraceObject.FTimeStamp := TDateTime(FTimeStamp^); |
654 |
end; |
655 |
|
656 |
|
657 |
|